Advanced search
Start date
Betweenand


An incremental space for visual mining of dynamic document collections

Full text
Author(s):
Roberto Dantas de Pinho
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Maria Cristina Ferreira de Oliveira; Rosane Minghim; Luciana Porcher Nedel; Wu Shin Ting; Ricardo da Silva Torres
Advisor: Maria Cristina Ferreira de Oliveira; Rosane Minghim
Abstract

Visual representations are often adopted to explore document collections, assisting in knowledge extraction, and avoiding the thorough analysis of thousands of documents. Document maps present individual documents in visual spaces in such a way that their placement reflects similarity relations or connections between them. Building these maps requires, among other tasks, placing each document and identifying interesting areas or subsets. A current challenge is to visualize dynamic data sets. In Information Visualization, adding and removing data elements can strongly impact the underlying visual space. That can prevent a user from preserving a mental map that could assist her/him on understanding the content of a growing collection of documents or tracking changes on the underlying data set. This thesis presents a novel algorithm to create dynamic document maps, capable of maintaining a coherent disposition of elements, even for completely renewed sets. The process is inherently incremental, has low complexity and places elements on a 2D grid, analogous to a chess board. Consistent results were obtained as compared to (non-incremental) multidimensional scaling solutions, even when applied to visualizing domains other than document collections. Moreover, the corresponding visualization is not susceptible to occlusion. To assist users in indentifying interesting subsets, a topic extraction technique based on association rule mining was also developed. Together, they create a visual space where topics and interesting subsets are highlighted and constantly updated as the data set changes (AU)