Advanced search
Start date
Betweenand


Regularity at infinity and global fibrations of real algebraic maps

Full text
Author(s):
Luis Renato Gonçalves Dias
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Maria Aparecida Soares Ruas; Carles Bivia Ausina; Terence James Gaffney; Zbigniew Jelonek; Mihai Marius Tibar
Advisor: Maria Aparecida Soares Ruas
Abstract

Let f : \'K POT. \' be a \'C POT. 2\' semi-algebraic mapping for K = R and a polynomial mapping for K = C. It is well-known that f is a locally trivial topological fibration over the complement of the bifurcation set B(f), also called atypical set. In this work, we consider the notion of t-regularity and \'ho E\'-regularity to study the bifurcation set of semi-algebraic mappings f : \'R POT. n\' \'ARROW\' \'R POT. p\' and polynomial mappings f : \'C POT. n\' \'ARROW\' \'C POT. p\'. We show that t-regularity is equivalent to regularity conditions at infinity which have been used by Rabier (1997), Gaffney (1999), Kurdyka, Orro and Simon (2000) and Jelonek (2003) in order to control the asymptotic behaviour of mappings. In addition, we prove that t-regularity implies \'ho E\'-regularity. The \'ho E\'-regularity enables one to define the set of asymptotic non \'ho E\'-regular values S(f) \'This contained\' \' K POT. p\', and the set \'A IND. \'ho E\'\' := f(Singf) U S(f). For \'C POT. 2\' semi-algebraic mappings f : \'R POT. n\' ARROW \' \'R POT. p\' and polynomial mappings f : \'C POT. n\' \'ARROW\' \'C POT. p\', based on a partial Thom stratification at infinity, we rove that S(f) and \'A IND. ho E\' are closed real semi-algebraic sets of dimension at most p - 1 (real dimension at most 2p - 2, for f : \'C POT. n\' \'ARROW\' \'C POT. p\'). Moreover, based on a new fibration theorem at infinity, i.e. holding in the complement of a sufficiently large ball, we obtain B(f) \'this contained\' \'A IND. ho E\'. We study two special classes of polynomial mappings f : \'R POT. n\' \"ARROW\' \'R POT. p\', the class of fair polynomial mappings and the class of Newton non-degenerate polynomial mappings. For fair polynomial mappings, we give an interpretation of t-regularity in terms of integral closure of modules, which is a real counterpart of Gaffney\'s result (1999). For non-degenerate polynomial mappings, we obtain an approximation for B(f) through a set which depends on the Newton polyhedron of f (results like this have been obtained by Némethi and Zaharia (1990) for polynomial functions f : \'C POT. n\' \'ARROW\' C and recently for mixed polynomial functions by Chen and Tibar (2012)). To finish, we discuss some simple consequences of our work: the equivalence t regularity Rabier (equivalently Gaffney, Kuo-KOS, Jelonek) condition for mappings f : X \'ARROW\' \'K POT. p\', where X \'this contained\' \'K POT. n\' is a smooth ane variety; the problem of bijectivity of semi-algebraic mappings; and a formula to compute the Euler characteristic of regular fibres of polynomial mappings f : \'R POT. n\' \'AROOW\' \'R POT. n-1\'. The above results are also extensions of some results obtained, for polynomial functions f : \'K POT. n\' \'ARROW K, by Némethi and Zaharia (1990), Siersma and Tibar (1995), Paunescu and Zaharia (1997), Parusinski (1995) and Tibar (1998). Title: Regularity at infinity and global fibrations of real algebraic maps (AU)

FAPESP's process: 08/10563-4 - Global Singular Fibrations of Polynomial Mappings
Grantee:Luis Renato Gonçalves Dias
Support type: Scholarships in Brazil - Doctorate