Asymptotic properties of semilinear problems: singular perturbations and applications
Nonautonomous dynamical systems of evolution equations on domains with moving boun...
Asymptotic dynamics for autonomous and nonautonomous nonlinear wave equations
![]() | |
Author(s): |
Ariadne Nogueira
Total Authors: 1
|
Document type: | Master's Dissertation |
Press: | São Carlos. |
Institution: | Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB) |
Defense date: | 2013-03-26 |
Examining board members: |
Maria do Carmo Carbinatto;
Claudia Buttarello Gentile;
Sérgio Henrique Monari Soares
|
Advisor: | Maria do Carmo Carbinatto |
Abstract | |
In this work we describe the results of the paper [25]. In [25] the authors prove existence of global attractors for the following semilinear damped wave equation \'\\épsilon u IND. t\'t + \'alpha\'(x)u IND. t\' + \'beta\' (x)u - \'\\SIGMA SOBRE i, j \'\\PARTIAL IND. i\' (\'a IND. i j\' (x) \'\\PARTIAL IND. j u\') = f (x, u), x \'IT BELONGS\' \'ÔMEGA\', t \'IT BELONGS\' [0, \'INFINITY\'), u(x,t), x \'IT BELONGS\' \'\\PARTIAL ÔMEGA\', t \'IT BELONGS\' [), \'INFINITY\'0 on an arbitrary domain \'OMEGA\' (AU) | |
FAPESP's process: | 10/12742-3 - Attractors and damped wave equations on unbounded domains |
Grantee: | Ariadne Nogueira |
Support Opportunities: | Scholarships in Brazil - Master |