Role of (Na,K)-ATPase in osmoregulation and excretion of ammonium ions in euryhali...
Role of (Na,K)-ATPase in osmorregulation and excretion of ammonium ions in euryhal...
![]() | |
Author(s): |
Douglas Chodi Masui
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | Ribeirão Preto. |
Institution: | Universidade de São Paulo (USP). Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (PCARP/BC) |
Defense date: | 2006-04-19 |
Examining board members: |
Francisco de Assis Leone;
Hiroshi Aoyama;
Hector Barrabin;
John Campbell McNamara;
Wagner Cotroni Valenti
|
Advisor: | Francisco de Assis Leone |
Abstract | |
The biochemical properties of the (Na+,K+)-ATPase from the gill microsomal tissue of the euryhaline, marine, swimming crab Callinectes danae, acclimated to 15 0/00 salinity, were investigated. Sucrose gradient centrifugation analyses revealed a unique peak, between 30-35% sucrose, coincident with the total PNPPase, ATPase, and (Na+,K+)-ATPase activities. The residual activity observed in the presence of 3 mM ouabain suggests the existence of other enzyme systems. Electrophoresis under denaturing conditions, using material from fresh-caught crabs (33 o/oo salinity, not acclimated), and from crabs acclimated to 15 or 33 o/oo salinity, for 10 days, revealed differences in migration pattern. Western blot analyses showed a significant increase in the amount of (Na+,K+)-ATPase alpha-subunit relative to total protein, for crabs acclimated to 15 o/oo compared to those acclimated to 33 o/oo salinity. However, the proportion of alpha-subunit in samples from fresh-caught crabs acclimated to 33 o/oo and those acclimated to 15 o/oo salinity was similar. (Na+,K+)-ATPase activity was stimulated by ATP and showed a single saturation curve, exhibiting site-site interactions (nH=1.2), with V= 298.8 ± 16.7 U/mg, and K0.5= 174.2 ± 9.8 uM. Stimulation of the ATPase activity by Mg2+ (V= 299.16 ± 14.06 U/mg; K0.5= 767.31 ± 36.06 uM), Na+ (V= 309.0 ± 15.8 U/mg; K0.5= 7.8 ± 0.4 mM), K+ (V= 300.6 ± 15.3 U/mg; K0.5= 1.63 ± 0.08 mM) and NH4+ ions (V= 345.1 ± 19.0 U/mg; K0.5= 6.0 ± 0.3 mM) occurred through site-site interactions. (Na+,K+)-ATPase activity was synergistically modulated by K+ ions, maximum activity varying from 300.6 ± 15.3 U/mg to 514.6 ± 26.2 U/mg, in the absence and presence of 50 mM NH4+ ions, respectively. K+ ions induced a 10-fold increase in enzyme apparent affinity (from 1.6 ± 0.08 mM to 0.157 ± 0.008 mM). As for K+ ions, NH4+ synergistically stimulated enzyme activity in the presence of variable K+ concentrations. The stimulation by NH4+ ions exhibited cooperative, site-site interactions. Although an increase in specific activity from 345.1 ± 19.0 U/mg to 516.8 ± 27.9 U/mg was seen, no significant changes in nH and K0.5 were observed. Ouabain inhibited total ATPase activity by about 90%, showing a KI= 45.09 ± 2.51 uM. Orthovanadate also inhibited the (Na+,K+)-ATPase with a KI of 1.31 ± 0.06 uM. Although the inhibitory effect of oligomycin was minimal (3.7%), this inhibition may suggest F0F1-ATPase activity. The inhibition by ethacrynic acid, in association with Na+ ion stimulation of the ATPase activity, suggests the presence of a K+-ATPase. The (Na+,K+)-ATPase hydrolyzed PNPP (K+-phosphatase activity) obeying Michaelian kinetics, with V= 102.9 ± 4.3 U/mg and KM= 1.7 ± 0.1 mM. The stimulation of K+-phosphatase activity by Mg2+ (V= 93.7 ± 2.3 U/mg; K0.5= 1.4 ± 0.03 mM), K+ (V= 94.9 ± 3.5 U/mg; K0.5= 2.9 ± 0.1 mM), and NH4+ ions (V= 106.2 ± 2.2 U/mg; K0.5= 9.8 ± 0.2 mM) following cooperative kinetics, suggests multiple binding sites. K+-phosphatase activity, however, was not synergistically stimulated by K+ and NH4+. Sodium ions (KI= 22.7 ± 1.7 mM), and orthovanadate (KI= 28.1 ± 1.4 nM) totally inhibited the total phosphatase activity. (AU) |