Advanced search
Start date
Betweenand


Investigation of the interaction properties and the catalytical properties of iron(III) porphyrins in the oxidation of an antimalarial drug.

Full text
Author(s):
Adamo Cesar Mastrângelo Amaro dos Santos
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Marilda das Dores de Assis; Koiti Araki; Sofia Nikolaou; Ieda Lucia Viana Rosa; Thais Horta Alvares da Silva
Advisor: Marilda das Dores de Assis
Abstract

In this work, the interaction between the antimalarial drug chloroquine with a series of anionic, cationic, and neutral meso phenyl substitued porphyrins; and their iron(III) complexes, was investigated by UV-Vis spectroscopy, in aqueous buffer and methanolic solution. On the basis of the interaction results, the meso phenyl substitued iron(III) porphyrins and FePPIX were used as catalyst in the oxidation of chloroquine by iodosilbenzene (PhIO) or peroxides (H2O2 e meta-chloroperbenzoic acid, CPBA), in both media. From the interaction studies, it was possible to observe the formation of a p-p complex generated from the cooperative effect of the electrostatic and p-p interactions between the anionic species and chloroquine. In methanol, no complexation was observed. The neutral and cationic porphyrins and iron(III) porphyrins did not form complexes with chloroquine. The association constants of the p-p complex formed between the meso phenyl substitued porphyrins and iron(III) porphyrins with chloroquine were comparable with those reported in the literature for the interaction of chloroquine with others natural iron(III) porphyrins. The oxidation reaction produtcts were analized by high perfomance liquid chromatography (HPLC). The major product obtained in all the studied systems was monodesethylchloroquine. This compound is also the main ?in vivo? product of chloroquine metabolism catalised by CYP-450. The identification of the second most abundant product, the desethylamine derived from chloroquine, was performed by HPLC coupled with mass spectrometry. The results obtained from the oxidation reactions of chloroquine by PhIO and H2O2 indicated that: (i) the anionic iron(III) porphyrins are efficient catalysts, with yields close to 30 % for monodesethylchloroquine; (ii) in aqueous buffer they are selective toward the oxidative N-deethylation of chloroquine, while in methanol up to five oxidation products are obtained. The neutral iron(III) porphyrins presented low catalytic activity for the chloroquine oxidation by PhIO or H2O2 due to the lack of electrostatic interaction between the catalyst and the substrate. (iii) The cationic iron(III) porphyrins did not exhibit any catalytic activity because of electrostatic repulsion tha tales place between the catalyst and the substrate. Catalyst degradation occurred when CPBA was used as oxidant, leading to very low yields of oxidation products. Catalytic studies using iron(III) porphyrins supported in polydimethylsiloxane (PDMS) membranes and in poly-(1?4)-b-d-glucosamine (chitosan) were also performed for the oxidation of standard substrates (cicloctene, ciclohexane and styrene). Only chitosan was considered to be an adequate support, resulting in efficient catalysis. The iron(III) porphyrins immobilized on this support were used for the oxidation of chloroquine by PhIO, leading to the same yields as those obtained with the same iron(III) porphyrins in homogeneous medium. It is noteworthy that the relations between the interaction FeP:substrate and the FeP catalytic activity previously observed for the iron(III) porphyrins in solution was also observed in these heterogeneous catalysis. The results obtained in this work show that anionic iron(III) porphyrins are efficient biomimetic catalysts for the oxidation of chloroquine by PhIO and H2O2, both when supported and in solution. Also, the catalyst ability to interact with the substrate has a strong influence on its activity and must be considered when studying other CYP-450 model systems. (AU)