Advanced search
Start date
Betweenand


Tetracationic alkylated porphyrin: Photosensitizers for use in photodynamic therapy of skin cancers

Full text
Author(s):
Christiane Pavani
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Yassuko Iamamoto; Marilda das Dores de Assis; Rosangela Itri; Janice Rodrigues Perussi; Roberto Santana da Silva
Advisor: Yassuko Iamamoto
Abstract

A series of photosensitizers (PS), which are meso-substituted tetra-cationic porphyrins, was synthesized and characterized in order to study the role of amphiphilicity and zinc insertion in PDT efficacy. The photophysical properties of all compounds are quite similar (absorption maxima in the same region of the spectra, f 0.02; ~0.8). An increase in lipophilicity and the presence of zinc in the porphyrin ring result in higher vesicle and cell uptake, because zinc can be complexed by the phosphate groups of the phospholipids. The results from the study of Langmuir monolayers and Langmuir-Blodgett mixed films corroborate this affirmation. Binding in mitochondria is dependent on the PS lipophilicity and on the electrochemical membrane potential. Zinc insertion was also shown to decrease the interaction with isolated mitochondria and with the mitochondria of HeLa cells, an effect that has been explained by the particular characteristics of the mitochondrial internal membrane. Phototoxicity was shown to increase proportionally with membrane binding efficiency, which is attributed to favorable membrane interactions between FSs and membranes, which allow for more efficient membrane photooxidation. For this series of compounds, photodynamic efficiency is directly proportional to membrane binding and cell uptake, but it is not totally related to mitochondrial targeting. Preliminary results of skin permeation and retention show that besides presenting low permeation and retention when suitably formulated, FSs can cross the EC barrier and accumulate in deeper regions, thus being applicable to topical PDT in the treatment of skin cancer. (AU)