Advanced search
Start date
Betweenand


Oxidation study of hydrogen in CO presence in diffusion gas electrode formed by filtering metals dispersed on carbon.

Full text
Author(s):
Luis Gustavo da Silva Pereira
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Química de São Carlos (IQSC/BT)
Defense date:
Examining board members:
Edson Antonio Ticianelli; Nerilso Bocchi; Adhemar Colla Ruvolo Filho
Advisor: Edson Antonio Ticianelli
Abstract

The CO poisoning problem of the conventional Pt-based anode catalyst of proton exchange membrane fuel cells (PEMFC) has been subject of several investigations in the last years. In this work, bimetallic Pt-M electrocatalysts particles dispersed on a carbon powder (where, M = Sn, Mo, Co, Fe, Ni and W) were prepared aiming to the development CO-tolerant anodes for PEMFC. These bimetallic electrocatalysts were prepared by two different methodologies: impregnation/decomposition and reduction by formic acid. With the same purpose, changes were also made on the configuration of the gas diffusion electrode, by incorporating a potential CO filtering layer formed by several dispersed M/C materials (where M = Mo, Cu, Fe and W). All produced materials were characterized by energy dispersive (EDX) and X-ray diffraction (XRD) analysis. Evaluations of the electrochemical performance were carried out by steady state single cell polarization measurements, cyclic voltammetry and the CO-stripping technique. Regarding the bimetallic materials, the better CO-tolerance results were obtained for Pt-Mo/C and Pt-W/C prepared by the formic acid method, which generated materials with lower particles sizes. This tolerance was associated to the occurrence of the so-called bifunctional mechanism in which the Pt absorbed CO is removed by oxidation to CO2, with participation of active no-noble metal hydrous oxides. For the electrodes containing the filtering layer, the higher CO-tolerance was seen for Mo/C and W/C, and this was attributed to a lowering of the CO content in the gas channels of the gas diffusion electrode, promoted by the occurrence of the so-called water-gas shift reaction. (AU)