Advanced search
Start date
Betweenand


Plantaricin 149 and analogs: antimicrobial activity, structural studies and mechanisms of action.

Full text
Author(s):
José Luiz de Souza Lopes
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Leila Maria Beltramini; Ilana Lopes Baratella da Cunha Camargo; Rosangela Itri; Clovis Ryuichi Nakaie; Eduardo Horjales Reboredo
Advisor: Leila Maria Beltramini
Abstract

Antimicrobial peptides are seen as promising alternatives to be employed in pharmaceutical industry for controlling infections caused by microorganisms, and also in food industry, where they can play roles as natural food preservatives. Plantaricina149 is a member of this group, constituted of 22 amino acid residues, cationic in nature and presenting inhibitory activity against some pathogenic bacteria. In this work, different Plantaricina149 analog peptides were synthesized to investigate their action against microorganisms (bacteria and fungi), with the aim of correlating these studies with the lytic action of the peptide on several membrane models (phospholipid monolayers and vesicles). The Plantaricina149 interaction with these systems was monitored by circular dichroism and fluorescence spectroscopies, surface tension assays, calorimetry and surface plasmon resonance, and showed to be highly specific to phospholipid surfaces that present negative charge density, such as the bacteria cell membrane. The initial peptide-phospholipids electrostatic interaction is extremely important, and it is capable of inducing a helical structure in the peptide C-terminal region, while the Nterminal region contributes with the hydrophobic interactions needed to the peptide penetration in the phospholipid layers and to the disruption of them. Similarly, the Plantaricina149 antimicrobial activity has also proved to be a result of the interactions from the two regions of the molecule, and it was strongly affected by the removal or modification of the peptide N-terminal region. Promoting the deletion of this region has left the peptide only with a bacteriostatic action against Staphylococcus aureus and Pseudomonas aeruginosa, removing its bactericide ability. (AU)