Advanced search
Start date
Betweenand


Study of optical and electrical properties of polymer light emitting diodes.

Full text
Author(s):
Clarissa de Almeida Olivati
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Roberto Mendonça Faria; Marco Cremona; Luiz Goncalves Neto; Carlos Frederico de Oliveira Graeff; Francisco Eduardo Gontijo Guimaraes
Advisor: Roberto Mendonça Faria
Abstract

Polymer electroluminescent devices are promising for a number of applications, in particular due to the possibility of obtaining large area, flexible displays. There are, however, major stumbling blocks associated with the short lifetimes and limited efficiency and brightness of light-emitting diodes (LEDs) fabricated with organic molecules in comparison with the inorganic ones. Severa1 methods have been proposed to increase brightness and eficiency, which include the use of electron and/or hole transporting layers adjacent to the electrodes. ln this thesis, we report the study of severa1 methods to improve the efficiency of the polymer light emitting diodes (PLEDs). In this context, Langmuir-Blodgett (LB) films were used in PLEDs, as emitting and electron transport layer, due to the high degree of thickness control, low number of defects, and some degree of organization at the molecular scale. Besides, improvements in electron injection into the emissive layer using ionic polymers (ionomers) as electron-transporting layers were observed. Othenvise, the combination of POMA and ITO as transparent electrode and PPV+DBS as active layer (ITO/POMA/PPV+DBS/A1) leads to a decrease in the operating voltage compared with the conventional PLED, ITO/PPV/Al. The devices were characterized by electrical and opto-electrical measurements. (AU)