Advanced search
Start date
Betweenand


Design of tubulin ligands with antitumor properties

Full text
Author(s):
Lívia de Barros Salum
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Adriano Defini Andricopulo; Ricardo Bicca de Alencastro; Nubia Boechat Andrade; Richard Charles Garratt; Rosendo Augusto Yunes
Advisor: Adriano Defini Andricopulo
Abstract

Inhibition of microtubule function is one of the most important approaches to anticancer therapy. Two main effects can be elicited by tubulin/microtubule-interactive agents: inhibition of tubulin assembly or microtubule stabilization. Interference with either the assembly or disassembly of microtubules within the mitotic spindle in rapidly dividing cells disrupts the normal process of cell division and provokes chemical signals that induce apoptosis. On one hand, taxanes are the most prominent among the microtubule-stabilizing antimitotic agents, while on the other hand, colchicine and the vinca alkaloids are representative members of the tubulin polymerization inhibitors. However, due to poor pharmacokinetic properties, high toxicity and resistance, their clinical utility has been limited, generating new opportunities for the development of novel anticancer agents. In recent years, structurally diverse taxoid-site ligands have been identified, including the potent microtubule-stabilizers discodermolide and dictyostatin. These marine sponge-derived natural products have higher water solubility than taxol and exhibit activity against taxane-resistant cell lines. Therefore, the elucidation of their binding modes is important in drug design. Predictive conformation-independent hologram QSAR models were developed for a series of synthetic discodermolide analogs as antiproliferative agents. Receptor-based studies were integrated with molecular recognition patterns, in agreement with experimental evidences, leading to ligand-binding conformations for discodermolide analogs in the taxol-site. The bioactive conformation models were used to the structural alignment of the data set for the development of 3D QSAR CoMFA models, and for comparison with the models constructed with the rigid-body alignment based on minimized structures of the ligands. A set of structural features related to the interaction with the taxol cavity was identified and the molecular recognition patterns were employed to the construction of pharmacophore models based on the microtubule-stabilizing natural products. A final simplified pharmacophore model was integrated in a virtual screening procedure consisting of consecutive hierarchical filters targeting the identification of novel microtubule-stabilizers. Caseobliquins were screened as microtubule-stabilizers, while intermediates for the synthesis of dictyostatin were evaluated by their effects on tubulin assembly. Recently, the search for more simple anti-tubulin agents has renewed the interest in the development of colchicine analogs, often discarded for their high toxicity. Considering the structurally diverse ligands of the colchicine site, the indole derivatives are among the most important ones. Hologram QSAR models were developed for four data sets consisting of 170 indole derivatives, and used to evaluate a data set of commercially available compounds. Pharmacophore-based 3D QSAR CoMFA and CoMSIA models were constructed and compared to three of the individual data sets. The results indicated that the indole nucleus bind to the protein cavity in different ways. Type 1 chalcones, designed based on classical colchicine site ligands, have been screened for their anti-proliferative activity and tubulin assembly inhibition, leading to the synthesis and assessment of a novel series of chalcone analogs with substantial antiproliferative properties. Some N-acylhydrazone derivatives behaved as mitotic arresters in a way similar to that of colchicine, while cytotoxic thiosemicarbazones did not exhibit tubulin-interacting properties. (AU)

FAPESP's process: 07/07294-9 - Rational drug design of novel beta-tubulin ligands as antitumor drug candidates
Grantee:Lívia de Barros Salum
Support Opportunities: Scholarships in Brazil - Doctorate