Advanced search
Start date
Betweenand


Electric properties study of polymer light-emitting electrochemical cells based on polyfluorene derivatives

Full text
Author(s):
Giovani Gozzi
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Roberto Mendonça Faria; José Arruda de Oliveira Freire; Sérgio Mergulhão; Jean Claude MPeko; Elson Longo da Silva
Advisor: Roberto Mendonça Faria
Abstract

Polymer light emitting electrochemical cells, PLECs, are organic electronic devices that have attracted commercial interest because they operate at low voltage and exhibit high performance without the need of specific electrodes such as indium tin oxide (ITO), calcium and others. This feature provides low cost of fabrication and exible devices. The charge injection in the PLECs is facilitated by the action of ionic species, which are inserted in the polymeric material by adding a salt. This thesis treats with a controversy related to transport phenomena along the bulk of the device. Currently, there is two opposite models. One that considers that transport is driven by diffusion mechanism; and the other takes into account the formation of a PIN junction (p-type semiconductor insulating layer n-type semiconductor). Here, we proposed the fabrication and characterization of PLECs having different compositions and thickness, and the results were faced up to the models. We showed the existence of critical concentration of salt, below of which the operation of the PLECs are mainly due to injection stimulated by the ionic double-layer. For higher applied voltages, the injection still exists but it is followed by a PIN junction formation. We also verified that for voltages above the turn-on the device electrical resistance is proportional to the sample thickness and is practically temperature-independent. Our results showed that for low voltages the transport is dominated by diffusion, but as the voltage increases, the semiconducting layer starts to be doped: p-type in one side, and n-type in the other. Therefore, the conductivity of the semiconducting layer increases, and it finalizes by the formation of the PIN junction. Finally, we showed that the double-layer characteristic does not depend on the electronic polymer, and that the value of the turn-on voltage is very close to that of the electronic gap of the forbidden band. (AU)