Advanced search
Start date
Betweenand


Employment of complex network theory on the study of the relations between individual morphology, global topology and dynamical aspects in Neuroscience

Full text
Author(s):
Renato Aparecido Pimentel da Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Luciano da Fontoura Costa; Adriano Defini Andricopulo; João do Espírito Santo Batista Neto; João Paulo Papa; Suani Tavares Rubim de Pinho
Advisor: Luciano da Fontoura Costa; Sergei Taraskin
Abstract

Complex network theory has been consolidated along the last years, owing to its potential as a versatile framework for the study of diverse discrete systems. It is possible to enumerate applications in fields as distinct as Engineering, Sociology, Computing, Linguistics and Biology, to name a few. For instance, the study of the structural organization of the brain at the microscopic level (neurons), as well as at regional level (cortical areas), has deserved attention. It is believed that such organization aims at optimizing the dynamics, supporting processes like synchronization and parallel processing. Structure and functioning are thus interrelated. Such relation has been addressed by complex network theory in diverse systems, possibly being its main subject. In this thesis we explore the relations between structural aspects and the activity in cortical and neuronal networks. Specifically, we study how the interconnectivity between the cortex and thalamus can interfere in activation states of the latter, taking into consideration the thalamocortical system of the cat, along with networks generated through models found in literature. We also address the relation between the individual morphology of the neurons and the connectivity in neuronal networks, and consequently the effect of the neuronal shape on dynamic processes actuating over such networks and on their efficiency on information transport. As such efficiency can consequently facilitate prejudicial processes on the networks, e.g. attacks promoted by neurotropic viruses, we also explore possible correlations between individual characteristics of the elements forming such systems and the damage caused by infectious processes started at these elements. (AU)