Advanced search
Start date
Betweenand


Synthesis and functionalization of nanoparticles with oligonucleotide for application in genosensors as advanced diagnostic tools for arterial hypertension

Full text
Author(s):
Thalita Verônica Calheiros Rolim
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Valtencir Zucolotto; Ronaldo Censi Faria; Camila Andréa de Oliveira
Advisor: Valtencir Zucolotto
Abstract

The increasing prevalence of hypertension in the world population and the risks presented by it in coronary heart disease reveals the importance of their control. Due to its multifactorial causes, the treatment of this disease is difficult. Environmental factors associated with genetic predisposition lead the individual to present high indexes of blood pressure when compared to individuals who do not have a predisposition. To identify the genetic predisposition would be ideal to minimize or even to prevent the pathology development. Nanoparticles are increasingly associated with biomolecules, their properties added with medical questions, can create new methods potentially efficient, both in diagnosis and therapy. This study aims at developing of poly(amidoamine) dendrimer-stabilized gold nanoparticles, conjugated with oligonucleotides to obtain genosensors able to detect the polymorphism of insertion and deletion of angiotensin I converting enzyme (ACE) gene, which is closely related with the predisposition to systemic blood hypertension. The nanoparticles were characterized by Transmission Electronic Microscopy (TEM), Zeta potential and Ultraviolet-Visible Spectroscopy (UV-VIS). The formation of the conjugate formed by the nanoparticle and the oligonucleotide was confirmed by UV-VIS, Dynamic Light Scattering (DLS) and Fourier Transform Infrared Spectroscopy (FTIR). Three different detection systems were built, in which the following techniques were applied: Electrical Impedance Spectroscopy, Electrochemical Impedance Spectroscopy and Separative Extended Gate Field Effect Transitor (SEGFET). For all systems polymorphism - related sequences were detected at concentrations down to nanomolar. The use of the conjugate amplified the signal of the genosensor due to the nanoparticles. The proposed genosensors may contribute to preventative medicine. (AU)

FAPESP's process: 10/14565-1 - Development of Nanoparticles functionalized with oligonucleotides for applications as genosensors for hypertension.
Grantee:Thalita Verônica Calheiros Rolim
Support Opportunities: Scholarships in Brazil - Master