Advanced search
Start date
Betweenand


Effects of irrigation with secondary treated sewage effluent and nitrogen fertilization on carbon and nitrogen cycling and on microbial metabolism on a Tifton 85 bermudagrass pasture

Full text
Author(s):
Sandra Furlan Nogueira
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Centro de Energia Nuclear na Agricultura (CENA/STB)
Defense date:
Examining board members:
Reynaldo Luiz Victoria; Cristiano Alberto de Andrade; Heitor Cantarella; Carlos Eduardo Pellegrino Cerri; Marco Antonio Nogueira
Advisor: Reynaldo Luiz Victoria
Abstract

In many parts of the world, the increasing demand and, especially in arid regions the natural scarcity of water has stimulated researches in terms of sustainable water reuse practices. Within human activities, common agricultural irrigation reveals one of the most consumptive practices of natural water resources. One alternative to minimize this problem represents the reuse of effluent generated by biological sewage treatment systems. The objective of this study was to investigate the impact of treated wastewater application in the dynamic of carbon (C) and nitrogen (N), and microbial metabolism of a soil under pasture. The study was carried out at Lins, São Paulo State, Brazil on a Tifton 85 bermudagrass pasture irrigated with secondary treated sewage effluent using a randomized complete block design with six treatments: SI (control, without irrigation and fertilization), W100 (potable water irrigation + 520 kg of N ha-1 year-1); E0, E33, E66 and E100 (treated wastewater irrigation + 0, 33, 66 and 100% of 520 kg of N ha-1 year-1). Samples of treated effluent/water, soil, plant (litter fall), and gases were taken from January 2004 through October 2007 and the treatments were kept under irrigation management receiving between 420 and 1,500 mm of water and treated sewage corresponding to an input of 640 to 2,300 kg ha-1 yr-1 of C and 135 to 480 kg ha-1 year-1 of N . Soil C stocks decreased slightly in the E33 treatment (-1.3 Mg ha-1) and a larger decrease was observed in W100 (-7.9 Mg ha-1). The inputs of organic C by the treated sewage did not affect the soil carbon isotopic composition (\'delta\' 13C), and in the irrigated treatments measured shifts in the isotopic signature (-0,7 a -1,2%o ) were caused by the mineralization of the remaining soil organic matter (SOC) (C3 plants). After 4 years of irrigation the only significant changes in soil N stocks were found in the W100 treatment (-450 kg de N ha-1). The \'deta\' 15N signature of the soil organic matter (0-5 cm depth) in the treatments irrigated with treated sewage was significantly higher (+2,2%o) than WI and W100, this suggests higher nitrogen cycling. The \'delta\' 15N signature of grass was enriched relative to the soil of W100 and WI +2,5%o and +4,9%o respectively). Negative or null rates of mineralization and nitrification occurred in the dry season of 2004, rainy and dry season of 2005 indicated an immobilization by the microorganisms, as a result of a high C:N ratio in the SOC. In the dry and wet seasons of 2006, mineralization and nitrification rates became positive suggesting a decrease of the C:N ratio, and the end of both priming effect and, thus the beginning of N cycling in the soil organic matter. Soils in the treatments showed low CH4 consumption rates (-0.1 kg de C ha-1 semester-1) and in some cases low emissions (+0.8 kg de C ha-1 emester-1). Nitrogen availability and soil moisture did not appear to be limiting factors for the treatments, thus CO2 emissions did not differ from each other over the collections (averages of 14.7 e 12.2 Mg of C ha-1 for wet and dry season, respectively). The highest CO2 fluxes were more related to periods of high precipitation and/or irrigation than to the applied treatments. The highest emissions of nitrous oxide were observed after the application of mineral N to the treatments irrigated with treated sewage, and the emissions were straightly related to the N addition. Values of Cmic:TOC (microbial C : Total Organic C) in the treatments averaged between 2.3 and 3.8 % through the seasons which means a significant resilience of the ecosystem, indicating that soil microbial community varied seasonally in their Cmic. Addition of mineral nitrogen and grass cutting practices influenced positively resulting in increase of Cmic in the first hydrological year and in the dry season in 2006, as well as an increase of soil moisture resulting in good conditions for C availability. With the increase metabolic activity in the dry season of 2004 and a continuous metabolic activity in the rainy season in 2005, the metabolic quotient (qCO2) resulted in an efficient scenario of conversion of C-CO2 into microbial biomass. In the second year, with a decrease of the irrigation depths and an increase in salts concentration after fertilization, the treatments irrigated with treated sewage and fertilizers presented decrease of Cmic with stable respiration (dry season 2005) or increase respiration (wet season 2006) after the management, and as a result qCO2 indicated inappropriate conditions for the microorganisms. In the dry season (2006) the physiological profile of the soil remained instable with no stress and Cmic increased and soil respiration remained inaltered. According to these results, the microbial indicators were not efficiently sensitive for revealing the more impacting management to the soil. The co-physiological indicators showed only the regular microbial metabolism along the agricultural practices. Carbon biomass exported by the grass in the E33 (15.2 Mg C ha-1 yr-1) did not differ from the biomass produced in the other treatments and the alterations in its C stocks were low compared to the other treatments. As a result, E33 seems to be the more sustainable and efficient practice for treated sewage use. Both the E66 and E100 treatments had high measured rates of N export, responding linearly up to 940 kg of N ha-1 yr-1. Thus, according to the variables studied, the management with highest sustainability was E100 where N outputs did not surpass the inputs (AU)