Advanced search
Start date
Betweenand


Identification and control of a sub-actuated autonomous underwater vehicle.

Full text
Author(s):
Juan Carlos Cutipa Luque
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
Decio Crisol Donha; José Jaime da Cruz; Helio Mitio Morishita; Alberto Luiz Serpa; Valceres Vieira Rocha e Silva
Advisor: Decio Crisol Donha
Abstract

This work presents a full six degrees-of-freedom mathematical model description of a subactuated Autonomous Underwater Vehicle (AUV). The work developed methods of System Identification for identifying the nonlinear model of the vehicle. In order to avoid divergence problems in the process of hydrodynamic, it used the parametric transformation technique. It used the extended Kalman filter to estimate the model parameters subject to Gaussian noise, in the process and in the measurements. In order to tackle the problem of multiple parameter estimation at once, the work used the maximum likelihood approach. The experimental results showed that the Kalman filter approach is better when the aim is to estimate a specific parameter, however, it diverges easily when the aim is to estimate multiple parameters. The maximum likelihood technique showed better response to estimate multiple parameters of the model. Zig-zag and circular standard maneuvers were tested with the identification algorithms. For experimental tests, an AUV, namely Pirajuba and constructed by the Unmanned Vehicle Laboratory (LVNT), were used. Results were also assessed using an AUV six degrees of freedom simulator. In a second stage, the work developed H¥ controllers to manoeuvre the vehicle in six-degrees-of-freedom. Decoupled SISO (single input and single output variables) and MIMO (multiple input and multiple output variables) controllers were synthesized in order to validate the coupling dynamics of the AUV. Moreover, centralized robust controllers were developed to control the vehicle in the sea and in test tanks with extreme conditions close to the ocean environmental. The control techniques were based in the H¥ mixed sensitivity approach which guarantees robust performance and stability of the sub-actuated system. A structure of two-degrees-of-freedom (2GL) controller presented better performance compared with the classic single H¥ controller of one degree of freedom structure. A comparison between responses was used to validate the decoupling and centralized controllers. The 2GL controller has good performance specifications despite these defined in the time domain. A central controller can control the AUV in complex maritime task that require complex and three-dimensional manoeuvres. The work deals also with the implementation issues coding these advanced control algorithms into the real time embedded system including inertial sensors, electric motors for the propeller and actuator surfaces, battery banks, and the unit central process ARM7 of 32 bits of fixed point. The control algorithms were translated from floating point to fixed point arithmetic avoiding data overflow, seeking simplicity and fast task execution. (AU)

FAPESP's process: 06/06685-1 - Controller design for a sub-actuated autonomous underwater vehicle
Grantee:Juan Carlos Cutipa Luque
Support Opportunities: Scholarships in Brazil - Doctorate