Advanced search
Start date
Betweenand


Evaluation of zinc phthalocyanine tetrasulfonated (ZnPcS4) iontophoretic skin penetration and citotoxicity studies in culture of tumor cells.

Full text
Author(s):
Joel Gonçalves de Souza
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Renata Fonseca Vianna Lopez; Daniel Junqueira Dorta; Roberto Santana da Silva
Advisor: Renata Fonseca Vianna Lopez
Abstract

Photodynamic therapy (PDT) is an innovative therapeutic modality for the treatment of cutaneous tumors. The phthalocyanines have been used as systemic photosensitizing agents due to its high affinity to tumor tissues and its accentuated effect when irradiated with light. However, the lipophilicity and the low partition coefficient oil/water of these substances difficult its topical application, leading to the development of charged derivatives, such as the zinc phthalocyanine tetrasulfonated (ZnPcS4) in an attempt to increase the water solubility, as well as improve the drug uptake by tumor cells. However, charged molecules have difficulties to cross the stratum corneum (SC), the main barrier of the skin. As iontophoresis is a noninvasive technique able to improve and control the penetration of charged molecules through the skin, it seems to be an alternative for enhancing ZnPcS4 penetration into the deep layers of the skin, where cutaneous tumors reside. This way, in vitro iontophoresis experiments of a hydrophilic gel containing ZnPcS4 applied topically in the presence and absence of NaCl were performed. In vivo iontophoresis studies were also carried out employing Wistar rats as animal model, as well as experiments in culture of tumour cells to evaluate the cytotoxicity of the drug. The analytical method for the quantification of the drug in the skin was validated considering the parameters of linearity, precision, accuracy, sensitivity and selectivity. The cathodal iontophoresis promoted a significant increase in retention of ZnPcS4 in both SC and viable epidermis in the experiments conducted in the presence and absence of NaCl in relation to the formulation applied passively or by anodal iontophoresis. Therefore, there was an increase in the amount of the drug retained in different layers of the skin when salt was removed from the formulation in the cathodal iontophoresis. In vivo studies also demonstrated that the electrical current increased penetration of the drug to the deeper layers of the skin in relation to passive experiments, evidenced by the fluorescence intensity of the drug showed by confocal microscopy and by the amount of drug retained in the different layers of the skin. Results with A431 tumor cells suggest that the concentration of the drug that reaches the viable epidermis after cathodal iontophoresis is able to kill more than 90% of these tumor cells when the radiation dose of 5 J/cm² was applied. In addition, when the electric current was applied to the cells, it was not observed any significant increase of cytotoxicity, demonstrating that the electric current application did not increased the uptake of the ZnPcS4 by the tumor cells. There are no doubts, however, that the electric current increased the ZnPcS4 penetration to the deep layers of the skin and lead to a homogeneous distribution of ZnPcS4 in these layers after 15 minutes of application. (AU)

FAPESP's process: 08/01962-2 - Evaluation of zinc phthalocyanine tetrasulfonated (ZnPcS4)iontophoretic skin penetration and citotoxicity studies in culture of tumor cells.
Grantee:Joel Gonçalves de Souza
Support Opportunities: Scholarships in Brazil - Master