Advanced search
Start date
Betweenand


Interaction polyclonal antibody-ruthenium complex such as nitric oxide release systems. Specificity and cytotoxicity measurement

Full text
Author(s):
Loyanne Carla Barbosa Ramos
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Roberto Santana da Silva; Victor Marcelo Deflon
Advisor: Roberto Santana da Silva
Abstract

Nitric oxide (NO) is a biological messenger that has vital importance in many physiological processes and shows a multitude of regulatory roles in the human body, such as neurotrasmission, vasodilatation, immune responses and also participates in various processes associated with cancer development. Several studies provide evidences of the tumoricidal properties of NO donors that can be used for the treatment of malignant tumors and nowadays are objects of interest. Based on this the aim of this work was synthesize compounds that in a controlled manner can deliver NO in a biological process. The synthesis, structural aspects, and in vitro cytotoxic properties of [Ru(bpy)2(dcbpy)] (dcbpy = 2,2\'-bipyridine-4,4\'-dicarboxylic acid), 2\'-bipyridine; bpy = 2,2\'-bipyridine) [Ru(bpy)(dcbpy)2], cis-[RuCl2(dcbpy)2], cis-[Ru(dcbpy)2NO(L)]n+ (L = chloride), [Ru(TERPY)(dcbpy)Cl] (TERPY = 2,2\': 6\'\', 2\'\' - terpiridine) and [Ru(TERPY)(dcbpy)NO] are described. Citotoxicity assays with aqueous nitrosyl ruthenium complex in metastatic B16-F10 cells displayed very little effect. Cell viability measurement showed decrease around 10 % in comparison to the control. It was associated due to the low interaction between nitrosyl ruthenium specie and the cell. Bioconjugation of nitrosyl ruthenium specie with polyclonal antibody IgG was achieved by covalent interaction and showed more specific interaction between bioconjugated and target cell. Exclusion chromatography was used to isolate --IgG conjugated, which was characterized by Western Blotting test. Following bioconjugation, the --IgG was submitted to cytotoxic studies with metastatic cells and the viability evaluated by MTT assay. The results displayed incredible increase of citotoxicity for B16F10 cells. Cell viability was achieved to decrease until to 90 % in comparison to the control when one fraction of --IgG was used. Taken together, the present findings demonstrate that the --IgG complex may elicit citotoxicity responses that may find useful applications in clinical therapy. (AU)

FAPESP's process: 09/11471-9 - Polyclonal antibody-ruthenium complex interaction as nitric oxide delivery system. Especificity and citotoxic evaluation
Grantee:Loyanne Carla Barbosa Ramos
Support Opportunities: Scholarships in Brazil - Master