Advanced search
Start date
Betweenand


Enantioselective analysis of oxybutynin and N-desethyloxybutynin: application to an in vitro biotransformation study.

Full text
Author(s):
Patricia da Fonseca
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Pierina Sueli Bonato; Vera Lucia Lanchote; Susanne Rath
Advisor: Pierina Sueli Bonato
Abstract

Oxybutynin is a chiral drug used as a racemate which, after oral administration, suffers pronounced liver biotransformation leading to the formation of N-desethyloxybutynin. This metabolite shows anticholinergic activity similar to the oxybutynin, contributing to the pharmacological effect and also with the adverse effects. Regarding the pharmacokinetic properties, some studies indicate the stereoselective biotransformation. Thus, it was proposed the development and validation of an enantioselective method for analysis of oxybutynin and its metabolite in rat liver microsomal fraction. The method was developed using high-performance liquid chromatography with detection at 262 nm; the separation of drug and metabolite enantiomers was performed on a Chiralpak AD column employing hexane: isopropanol: ethanol (95:4:1, v/v/v) plus 0.3 % diethylamine as the mobile phase, at a flow rate 0.9 mL min-1. Liquid phase microextraction was used for preparation of the samples and the method was optimized using factorial design; the following condition was established: extraction time of 45 min, no methanol and NaCl in donor phase, agitation of the sample at 4500 rpm, membrane of 6 cm in length, donor phase pH 8.0 and trifluoracetic acid 0.1 mol L-1 as aceptor phase. The method was linear over the range of 312 - 5000 ng mL-1 for oxybutynin enantiomers and over the range of 250 - 5000 ng mL-1 for the metabolite enantiomers. The recoveries were 61 and 55% for (R)-oxybutynin and (S)-oxybutynin, respectively and, for (R)-N-desethyloxybutynin and (S)- N-desethyloxybutynin 70 and 72%, respectively. Within-day and between-day assay precision and accuracy were lower than 15%. The method was applied to an in vitro biotransformation study using rat liver microsomal fraction. The kinetic constants were determined and there was a small difference in affinity of the enzyme for oxybutynin enantiomers (Km=9.3 nmol L-1 and 7.9 nmol L-1 for (R)-oxybutynin and (S)-oxybutynin, respectively), with higher affinity to the (S)-oxybutynin according to the lower value of Km (AU)