Advanced search
Start date
Betweenand


Caspase-1 activation and pore formation in murine macrophages infected with Legionella pneumophila

Full text
Author(s):
Tatiana Nunes Silveira
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Dario Simões Zamboni; Maria Cristina Roque Antunes Barreira; Patricia Torres Bozza; Sergio Costa Oliveira; Luis Lamberti Pinto da Silva
Advisor: Dario Simões Zamboni
Abstract

Legionella pneumophila, the etiological agent of Legionnaires disease, is known to trigger pore formation in bone marrow-derived macrophages (BMMs) by mechanisms dependent on the type IVB secretion system known as Dot/Icm. Here, we used several mutants of L. pneumophila in combination with knockout mice to assess the host and bacterial factors involved in pore formation in BMMs. We found that regardless of Dot/Icm activity, pore formation does not occur in BMMs deficient in caspase-1 and Nlrc4/Ipaf. Pore formation was temporally associated with IL-1b secretion and preceded host cell lysis and pyroptosis. Pore-forming ability was dependent on bacterial Dot/Icm but independent of several effector proteins, multiplication and de novo protein synthesis. Flagellin, which is known to trigger the Nlrc4 inflammasome, was required for pore formation as flaA mutant bacteria failed to induce cell permeabilization. Accordingly, transfection of purified flagellin was sufficient to trigger pore formation independent of infection. By using 11 different Legionella species, we found robust pore formation in response to L. micdadei, L. bozemanii, L. gratiana, L. jordanis and L. rubrilucens, and this trait correlated with flagellin expression by these species. Furthermore, we found that Asc and Caspase-11 showed an intermediate phenotype in pore formation, suggesting that other pathways may be involved in this process. We also observed that the pore formation triggered by L. pneumophila differs from the pore induced by ATP. Together, the results suggest that pore formation is neither L. pneumophilaspecific nor the result of membrane damage induced by Dot/Icm activity; instead, it is a highly coordinated host cell response dependent on host Nlrc4 and caspase-1 and on bacterial flagellin and type IV secretion system. (AU)