Advanced search
Start date
Betweenand


Magnetic nanoparticles of gold-coated cobalt and cobalt ferrite as biocompatible materials for biomedical applications

Full text
Author(s):
João Batista Souza Junior
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Química de São Carlos (IQSC/BT)
Defense date:
Examining board members:
Laudemir Carlos Varanda; Pedro Henrique Cury Camargo
Advisor: Laudemir Carlos Varanda
Abstract

Superparamagnetic nanoparticles have been extensively studied because its wide range of biomedical applications in both diagnostic and therapy areas. Although different materials are currently investigated, superparamagnetic iron oxides nanoparticles (SPION), magnetite and maghemite, are the most extensively studied for applications in medicine. The lower toxicity profile of the SPION becomes the most attractive than metal or alloys nanoparticles. Nevertheless, iron oxides nanoparticles have low saturation magnetization, which further decreases due to successive coats to provide their functionality, leading the actual demand to develop superparamagnetic nanoparticles with high magnetization, low toxicity and easy surface functionalization with biocompatible agents. In this work, superparamagnetic nanoparticles of metallic cobalt and cobalt ferrite were synthesized and their magnetic properties were compared with the magnetite SPION. Cobalt nanoparticles were chosen because present high ferromagnetic behavior among chemical elements, second only to iron, besides their low cost. The magnetic nanoparticles were synthesized by both microemulsion and thermal decomposition (based on the polyol process) methods and their chemical composition, structure, size and size distribution were properly characterized. In addition, the ferrite and metallic cobalt nanoparticles were coated with gold by using the seed-mediated growth method. The used microemulsion systems were not efficient enough to synthesize stable metallic nanoparticles and to promote the expected morphological control even to ferrites. Instead, the thermal decomposition processes resulted in rigorous control of chemical compositional, structure and morphology in all different prepared samples. Au-coating process was effective to protect the magnetic nuclei also giving additional stability, low toxicity and a bifunctionality to the magnetic nanoparticle since their surface plasmon resonance phenomenon was preserved in the core@shell nanostructure. The superparamagnetic behavior of the Au-coated cobalt nanoparticle was preserved and their saturation magnetization was significantly increased compared with the naked magnetite SPION. In conclusion, the synthesized nanoparticles present enhanced magnetic and surface properties showing good potential to be used in biomedical application as bifunctional optical-magnetic sensor. (AU)

FAPESP's process: 10/04208-7 - Magnetic nanoparticles of gold-coated cobalt and cobalt ferrite as biocompatible materials for biomedical applications
Grantee:João Batista Souza Junior
Support Opportunities: Scholarships in Brazil - Master