Advanced search
Start date
Betweenand


Ethanol electro-oxidation investigated by on-line mass spectrometry on metallic nanostructures

Full text
Author(s):
Daniel Augusto Cantane
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Química de São Carlos (IQSC/BT)
Defense date:
Examining board members:
Fabio Henrique Barros de Lima; Hamilton Brandão Varela de Albuquerque; Adalgisa Rodrigues de Andrade; Auro Atsushi Tanaka
Advisor: Fabio Henrique Barros de Lima
Abstract

Ethanol is a promissing chemical fuel as an in situ source of energy generation for low-temperature fuel cells application (25 °C). However, due to the dominance of the paralell reaction pathway, the development of direct ethanol fuel cells (DEFC) has been impeded by the low activity of existing electrocatalysts for oxidizing ethanol to CO2. Based on this, the thesis aims to synthesize novel nanostructured electrocatalysts for ethanol electro-oxidation, besides deeper understanding of the reaction mechanism which takes place. The ethanol electro-oxidation reaction (EOR) was studied in acid electrolyte on carbon-supported core-shell electrocatalysts, consisting of Pt shell on Rh, Cu and Ni cores or on hollow-core nanostructure. On the other hand, in alkaline electrolyte, the reaction was investigated on electrodeposited polycristallines Pt, Pd, Rh electrodes. The reaction products during EOR on differents electrocatalysts were monitored by means of on-line DEMS (Differential Electrochemical Mass Spectrometry) measurements. By on-line DEMS measurements, the Pt1.0/Rh/C electrocatalysts revealed the highest efficiency for oxidizing ethanol to CO2 in acid electrolyte, which was ascribed to its faster and more extensive ethanol deprotonation on the Pt-Rh sites, producing adsorbed intermediates in which the C-C bond cleavage is facilitated. On the other hand, potentiodynamic and potentiostatic curves showed the higher overall reaction rate for ethanol oxidation on Pt hollow nanostructure than that observed for Pt1.0/Rh/C and commercial Pt/C electrocatalysts, which might be attributed to the weaker adsorption strength of ethanol and intermediate species, such as CO and CHx. This improvement is achieved by the hollow-induced lattice contraction (Geometric effect) and the presence of Ni atoms located at the underneath Pt shell (Electronic effect). Both of these structural features may result in a decrease of the Pt 5d-band center - a great way for enhancing both the catalysts\' activity and Pt mass activity for ethanol oxidation in acid fuel cells. In the case of ethanol electro-oxidation in alkaline electrolyte, the results showed that the highest overall reaction rate occurred on Pt electrocatalyst when compared with polycrystalline Pd and Rh electrodes. On-line DEMS experiments revealed that the polycrystalline Rh electrode exhibited greater efficiency for oxidizing ethanol to CO2, but Pd showed higher amounts of acetic acid (ethylacetate). Furthermore, in the case of Pt and Rh electrocatalysts, the CO2 formation proceeded via the COad and CHx,ad species oxidation, however, on Pd electrode, the reaction occured via a divergent pathway. Therefore, a deeper understanding for both catalysts\' activity and reaction mechanism seems to be a promising way for resolving the major obstacles to the widespread commercialization of low-temperature fuel cells. (AU)

FAPESP's process: 09/11073-3 - Investigation of the mechanism of ethanol electro-oxidation on metallic nanoparticles.
Grantee:Daniel Augusto Cantane
Support Opportunities: Scholarships in Brazil - Doctorate