Advanced search
Start date
Betweenand


Effect of atorvastatin on the activity and expression of ABC and SLC membrane transporters.

Full text
Author(s):
Alice Cristina Rodrigues
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Rosario Dominguez Crespo Hirata; Marcia Alves Marques Capella; Tania Marcourakis; Nancy Amaral Reboucas; Jose Eduardo Tanus dos Santos
Advisor: Rosario Dominguez Crespo Hirata
Field of knowledge: Health Sciences - Pharmacy
Indexed in: Banco de Dados Bibliográficos da USP-DEDALUS; Biblioteca Digital de Teses e Dissertações - USP
Location: Universidade de São Paulo. Biblioteca do Conjunto das Químicas; T 615.766; R696e
Abstract

Specific membrane transporters have a significant impact on drug absorption and disposition. Most of them belong to two super-families, ABC (ATP-binding cassette) and SLC (solute-linked carrier). Statins are important therapeutic agents in the management of hypercholesterolemia, and considerable inter-individual variation exists in response to its therapy. The effects of atorvastatin expression of efflux (ABCG2 and ABCC2) and uptake (SLCO1B1, SLCO2B1 and SLC22A1) drug transporters were investigated by qPCR in Caco-2 and HepG2 cell lines and in peripheral blood mononuclear cells (PBMCs) of eighteen normolipidemic (NL) and twenty two hypercholesterolemic (HC) individuals treated with atorvastatin (10mg/day/4 weeks). The possible involvement of ABCB1 C3435T polymorphism in ABCB1 mRNA expression was also evaluated. In vitro studies with the cell lines HepG2 and Caco-2 were also performed. The effect of atorvastatin on the activation of the promoter of ABCB1 by transcription factors (NF-kappaB, NF-Y, c-jun, SP-1, and PXR) was evaluated by electrophoretic mobility shift assay (EMSA), and ABCB1 mRNA half-life were measured by PCRq. The expression and functional activity of ABCB1 were investigated by Western blot, imunohistochemistry and flow cytometry. Immunohystochemical analysis revealed that ABCB1 is located at the apical membrane of the bile canaliculi in HepG2, and in apical membrane of Caco-2 cells. Atorvastatin treatment of HepG2 cells caused a decreased in ABCB1 and an increase in ABCC2 and ABCG2 transcript levels. These effects were time and dose-dependent. Treatment of Caco-2 cells did not present any differences in efflux transporters mRNA levels. Treatment of HepG2 cells with 10 and 20 M atorvastatin caused a reduction on ABCB1 expression (0 &#181;M: 1,00 ± 0,06; 10 &#181;M: 0,69 ± 0,25, p< 0,05; 20 &#181;M: 0,69 ± 0,06, p< 0,05), and a 41% decrease in ABCB1-mediated efflux of Rhodamine123 (p < 0.01). Although reduced ABCB1 mRNA expression was not due to any repressor protein suppressing ABCB1 promoter activation, mRNA stability studies revealed that mRNA stability of ABCB1 was markedly decreased by atorvastatin treatment (2h versus 7h for control). In agrrement with these results, in PBMCs of HC individuals, atorvastatin treatment also reduced ABCB1 mRNA expression. However, the down-regulation was not associated with the presence of 3435T allele. For the uptake transporters, atorvastatin decreased SLC22A1 transcript levels after 30min-treatment and it was not regulated in HepG2. On the other hand, SLCO2B1 was up-regulated after 24h-treatment of HepG2 cells. In vivo studies with PBMCs revealed that during hypercholesterolemia all the drug transporters analyzed were increased almost 10-fold (p< 0.05), and after atorvastatin therapy the efflux and uptake transporters transcript levels were all down-regulated. These findings suggest that atorvastatin exhibits differential effects on mRNA expression of drug transporters depending on the cell type, which may be related to tissue-specific expression of transcription factors. Atorvastatin leads to decreased ABCB1 function and synthesis in HepG2 cells by increasing degradation of ABCB1 mRNA. Therefore, inhibition of ABCB1 may reduce atorvastatin elimination via bile, increasing its cellular concentrations. We also may suggest that in PBMCs cholesterol modulates mRNA expression of drug transporters, and this may contribute to the variability of response to atorvastatin. (AU)