Advanced search
Start date
Betweenand
Related content


Study of P450 oxidoreductase protein and hepatic cytochromes 2C19 and 3A4 as a potential modulatory factors in 21-hydroxylase deficiency phenotype

Full text
Author(s):
Larissa Garcia Gomes
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Tânia Aparecida Sartori Sanchez Bachega; Ivo Jorge Prado Arnhold; Margaret de Castro; Cláudio Elias Kater; Chin Jia Lin
Advisor: Tânia Aparecida Sartori Sanchez Bachega
Field of knowledge: Health Sciences - Medicine
Indexed in: Banco de Dados Bibliográficos da USP-DEDALUS; Biblioteca Digital de Teses e Dissertações - USP
Location: Universidade de São Paulo. Biblioteca Central da Faculdade de Medicina; FM W4.DB8 SP.USP FM-2; G615es
Abstract

Adrenal 21-hydroxylase deficiency is a common genetic disorder, caused by mutations in the CYP21A2 gene, which encodes the 21-hydroxylase P450c21. The 21-hydroxylase deficiency disrupts cortisol and aldosterone biosynthesis and leads to accumulation of androgen precursors. There are 3 main phenotypes: the simple virilizing (SV) form, in which girls present with virilized external genitalia at birth and both sexes present with precocious pseudopuberty; the salt wasting (SW) form, characterized by additional salt-wasting crisis in the neonatal period in both sexes; and the nonclassic (NC) form, in which the hyperandrogenic signs occur later in life, during childhood, adolescence or adulthood. In vitro studies show a good correlation between the degree of enzymatic impairment determined by genotype and phenotype. However, there are some discrepancies as: patients with clinical and hormonal profiles of nonclassic form in whom mutations are not found in one or both alleles, and patients with milder phenotype than the ones predicted by genotyping. These discrepancies suggest the existence of modulatory factors in 21- hydroxylase deficiency phenotype. The first hypothesis was that there were mutations in P450 oxidoreductase (POR), a gene which encodes a flavoprotein that donates electrons for all microsomal P450s, including P450c21, an essential step for P450s activity. The second hypothesis was that other enzymes that not P450c21 could perform extra-adrenal 21-hydroxylation of progesterone and 17OHprogesterone (17OHP), modulating salt balance and virilization. Hepatic drugmetabolizing P450 enzymes CYP2C19 and CYP3A4 can 21-hydroxylate progesterone; however, this activity was never compared to 21-hydroxylation performed by P450c21, in order to determine the importance of this extra-adrenal activity in vivo. The present cohort consisted of 11 patients with nonclassic form and incomplete genotype and 6 patients with genotype/phenotype discrepancies (genotype-predicted SW form and manifested SV form, n=5; genotyped-predicted SV form and manifested NC form, n=1). The POR gene was sequenced in these 17 patients, and 10/30 alleles presented the polymorphism A503V. P450c21, PORwt and POR A503V were expressed in bacteria, assayed in vitro, and the kinetics parameters Km, Vmax and Vmax/Km were calculated. Although POR A503V variant decreases the activity of P450c17, our study showed that it does not alter the 21-hydroxylation by P450c21. Therefore, there are no POR variants in this cohort that could explain discrepancies between genotype and phenotype in 21- hydroxylase deficiency. To evaluate the hypothesis of extra-adrenal 21- hydroxylation, P450c21, CYP2C19, CYP3A4, and POR were expressed in bacteria, assayed in vitro, and kinetic parameters assessed. Compared to P450c21, the Vmax/Km of 21-hydroxylation of progesterone by CYP2C19 and CYP3A4 was 17% and 10%, respectively. Neither CYP2C19 nor CYP3A4 were able to 21-hydroxylate 17OHP. Considering that little 21-hydroxylation activity is enough to produce sufficient amount of aldosterone to avoid the dehydration, this study suggests that extra-adrenal 21-hydroxylation by CYP2C19 and CYP3A4 may be able to ameliorate the mineralocorticoid, but not the glucocorticoid deficiency. CYP2C19 is very polymorphic, and some haplotypes can modify enzymatic activity. For example, the unique ultrametabolizer allele CYP2C19*17 has two polymorphisms in the promoter region that increase gene transcription in 2-4 times. Thus, patients harboring the CYP2C19 ultra-metabolizer allele could present an increased extraadrenal 21-hydroxylation of progesterone, and hence be able to avoid salt wasting crisis. CYP2C19 gene was sequenced in the 5 patients who did not present salt wasting crisis as expected, and 1/5 patients was homozygous and 1/5 patients was heterozygous for the CYP2C19*17 allele. Heterozygosity was also present in the control group (patients with salt wasting form and genotype/phenotype concordance). Therefore, heterozygosity for CYP2C19*17 seems to be insufficient to modulate salt balance but homozygosity might be able to avoid salt wasting crisis. In conclusion, we described for the first time the modulatory effect of an allelic variant of an extra-adrenal P450 enzyme ameliorating the salt wasting phenotype in a patient with 21-hydroxylase deficiency. Taken together with the remaining undefined genotypes, these results suggest that multiple extra-adrenal enzymes, rather than a single one, modulate the phenotypic expression of defects in 21-hydroxylase. (AU)