Advanced search
Start date
Betweenand


Methods of evaluation and mechanisms involved in apical and periapical repair following root canal treatment in teeth with experimentally-induced apical periodontitis

Full text
Author(s):
Francisco Wanderley Garcia de Paula e Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Odontologia de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Lea Assed Bezerra da Silva; Ney Soares de Araujo; Paulo Nelson Filho; Francisco Humberto Nociti Junior; Carlos Ferreira dos Santos
Advisor: Lea Assed Bezerra da Silva; Yvonne Lorraine Kapila
Field of knowledge: Health Sciences - Dentistry
Indexed in: Banco de Dados Bibliográficos da USP-DEDALUS; Biblioteca Digital de Teses e Dissertações - USP
Location: Universidade de São Paulo. Biblioteca Central do Campus de Ribeirão Preto; Silva, Francisco W. G. de P. e
Abstract

Clinical diagnosis of apical periodontitis is difficult due to the intraosseous nature of the disease and radiographic evaluation does not provide sufficient information to determine a healthy apical periodontium following root canal therapy. Therefore, the aim of this study was to compare the radiographic and cone beam computed tomographic findings with microscopic evaluation following root canal treatment in dogs teeth. Then, the presence of matrix metalloproteinases (MMPs) in apical periodontitis and during the healing phase following treatment was evaluated and compared to the expression of MMPs in periapical cysts and granulomas obtained from human. Finally, the mechanisms involved in apical cementogenesis were investigated using human periodontal ligament cells. Apical periodontitis was induced in dogs teeth and then root canal treatment was performed in a single visit or using calcium hydroxide [Ca(OH)2] as the root canal dressing. Tomographic and radiographic evaluations were performed prior to and following induction of apical periodontitis, and 180 days following root canal therapy. Periapical tissues were evaluated by conventional light microscopy, immunofluorescence, immunohistochemistry, and real time RT-PCR. In vitro, periodontal ligament cells were used to evaluate the effects of Ca(OH)2 treatment on cell migration, proliferation, differentiation, and mineralization. The signaling pathways triggered by treatment with Ca(OH)2 were investigated using mitogen activated protein kinase (MAPK) biochemical inhibitors, calcium channel blockers, and extracellular regulated protein kinase (ERK-1 / ERK-2) silencing RNAs. Based on the results obtained, apical periodontitis was detected with higher sensitivity and accuracy by means of cone beam computed tomography compared to conventional periapical radiographs, using microscopic evaluation as the gold standard. Histological evaluation revealed that teeth with apical periodontitis presented microorganisms throughout the root canal system and in areas with resorption of cementum. Apical periodontitis was characterized by collagen fiber disorganization and high expression of MMPs. The presence and activity of MMPs was confirmed in periapical inflammatory diseases (cysts and granulomas) obtained from humans. Root canal treatment outcome was characterized by maintenance or progression of apical periodontitis and high expression of MMPs in teeth submitted to root canal treatment in a single visit, whereas root canal treatment outcome in teeth submitted to root canal treatment using Ca(OH)2 as the root canal dressing, higher number of teeth presented reduced apical periodontitis and lower expression of MMPs. In this group, cementum neogenesis was evident in the apical foramina. Periodontal ligament cells stimulated with Ca(OH)2 expressed cementoblastic specific proteins (CEMP-1, CAP) and were able to synthesize mineralized nodules via ERK MAPK. The effects of Ca(OH)2 occurred via calcium channels, since their blockade prevented ERK-1 and ERK-2 phosphorylation and therefore expression of CEMP-1 and CAP. CEMP-1 stimulated cell migration, proliferation, and mineralization and it was central to cementogenesis because blockade of activity of CEMP-1 prevented cell migration and mineralization. Taken together, these findings demonstrate that cone beam computed tomography is superior to conventional periapical radiography for detection of refractory apical periodontitis. Furthermore, the root canal treatment using Ca(OH)2 as the root canal dressing permitted a more favorable outcome than the root canal treatment performed in a single visit, probably due to the ability of Ca(OH)2 induce cementoblastic differentiation of periodontal ligament cells and mineralization. (AU)