Advanced search
Start date
Betweenand
Related content


Spectroscopic analysis of the interaction of the peptide hormone bradykinin with model membranes.

Full text
Author(s):
Rozane de Fatima Turchiello Gómez
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Defense date:
Examining board members:
Maria Teresa Moura Lamy; Galina Borissevitch; Rosangela Itri; Sonia Renaux Wanderley Louro; Shirley Schreier
Advisor: Maria Teresa Moura Lamy
Abstract

In this work we studied the interaction of the peptide hormone bradykinin (BK, \'Arg POT.1\'-\'Pro POT.2\'-\'Pro POT.3\'-\'Gly POT.4\'-\'Phe POT.5\'-\'Ser POT.6\'-\'Pro POT.7\'-\'Phe POT.8\'-\'Arg POT.9\') and fragments (des-Arg 1-BK, des-Arg9-BK e BK1-5) with model lipid membranes, using two different techniques: Fluorescence and Electron Paramagnetic Resonance (EPR). We monitored the spectral alterations of the extrinsic fluorescent probe ortho­ aminobenzoic acid (Abz), bound to the peptide bradykinin (Abz-BK) and its fragments. A blue shift of 6 nm in the emission spectra and an increase in fluorescence anisotropy and lifetime in the presence of dimyristoyl phosphatidylglycerol (DMPG) were observed, indicating the peptide­ membrane interaction. Time resolved anisotropy measurements are in accord with these results. For the peptides in solution, we found a rotational correlation time on the ps range, and in the presence of a saturating concentration of DMPG this time was increased. The fluorescence properties of the extrinsic probe were tested to ensure its validity, i. e., the minimum interference of the probe in the peptide-lipid interaction process. By EPR we monitored the alterations caused by the peptide on the structure of DMPG bilayers, using spin labels incorporated in the membrane at two different positions of the hydrocarbon chain (5 and 12). For temperatures above the lipid gel-liquid crystal thermal transition 2(0°C) all the spin labels used indicated that at 10 mol % peptide, interact with DMPG turning the membrane less fluid, suggesting a partial penetration of these peptides in the membrane. In the lipid gel phase, BK was found to cause a decrease of membrane fluidity. At l5°C, the BK-DMPG system presents a hysteresis effect, evidenced by the different spectra yielded upon cooling (45 to 0°C) and heating (O to 45°C) the sample. These results were found to be different from those elicited by the BK fragments, and other cations tested: the monovalent (Na+,the divalent (Zn++), and the peptide peptide pentalysine (AU)