Advanced search
Start date
Betweenand
Related content


Growth and properties of single crystal fibers of niobates and tantalates prepared by technical LHPG

Full text
Author(s):
Renato de Almeida Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Jose Pedro Andreeta; Sonia Licia Baldochi; Ducinei Garcia; Maria Cristina Terrile; Jose Arana Varela
Advisor: Jose Pedro Andreeta
Abstract

This work aims to give an important contribution to the research of new materials, by determining optimized conditions for obtaining of single crystal fibers of oxide compounds by LHPG technique. With this objective fibers were successfully obtained for compounds which can be used as solid state lasers (CaNb2O6 e GdTaO4), for X-ray optics applications (gradient crystals of GdTaO4-ErTaO4 e GdTaO4-YbTaO4 systems) and also as superconducting compounds. The preparation of the pedestals was a very important stage in the obtaining of the various fibers, with influence in growth experiments and quality of the fibers. The structural characterization by X-ray diffraction techniques showed that CaNb2O6 and GdTaO4 single crystal fibers presenting high crystalline quality can be quickly obtained. These fibers can be highly suitable for optics applications. In addiction the results of spectroscopic measurements showed Nd+3 doped CaNb2O6 fibers are good candidates for development of micro-lasers. Single crystals with controlled lattice parameter gradient were obtained for the first time for GdTaO4- ErTaO4 e GdTaO4-YbTaO4 systems. The applied approach in here enabled to obtain a compositional and lattice parameters gradient presenting optimized linear behavior. For the GdTaO4- ErTaO4 system a lattice spacing gradient of 1.24%/cm for (4 -4 4) reflection was obtained. For GdTaO4-YbTaO4 crystals a gradient of 2.9%/cm was observed. This is the largest value of lattice spacing gradient up to this moment. By an innovation, using metallic Nb in the form of powder in preparing the pedestals, fibers of the EuNbO3 compound were obtained, being the first report by a fusion technique. The application of this innovation to obtain phases with this structure for others rare earth enabled the discovery of three new phases, namely Yb2NbO5, Sm2NbO5 and Er2NbO5. The structure of these new phases was determined and by magnetic and electric characterizations it was observed that the phases are superconductor materials with transition temperatures, Tc, equals to 12,5K, 6,5K and 14,9K respectively for Yb2NbO5, Sm2NbO5 and Er2NbO5. compounds (AU)