Advanced search
Start date
Betweenand


Molecular dynamics study of hydrolases for saccharification of cellulose and related proteins

Full text
Author(s):
Erica Teixeira Prates
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Química
Defense date:
Examining board members:
Munir Salomão Skaf; Alessandro Silva Nascimento; Paulo Augusto Netz; René Alfonso Nome Silva; Ricardo Aparicio
Advisor: Munir Salomão Skaf
Abstract

The lignocellulosic biomass from sugar cane bagasse and from other raw materials is a highly promising material for the generation of renewable and environmentally positive fuels. In terms of performance and environmental advantages, the best option for converting this biomass into soluble sugars to produce ethanol is the enzymatic catalysis. However, this is also the most expensive step of the second-generation ethanol production due to the low efficiency and high cost of the currently available enzyme cocktails. In order to make the process more efficient and economically viable, it is necessary to deepen the understanding of the cellulolytic hydrolysis mechanisms. Great investment in research has been employed for this purpose, and as part of these efforts, this work consists on a set of molecular dynamics studies of three cellulolytic enzymes, namely: 1) laminarinase from Rodhothermus marinus; 2) Endoglucanase 3 from Trichoderma harzianum and 3) b-glucosidase from Aspergillus niger. In general, these studies aimed to investigate the relationship between the structural arrangement and experimental data that are interesting for the biocatalyst performance evaluation, such as affinity to the substrate and thermal stability. As part of the BioEn Thematic Project, funded by FAPESP (Research Foundation of the State of São Paulo), these computational studies were carried out in close collaboration with structural biophysicists and molecular biologists. The choice of the three proteins considered here was based on these experimental studies (AU)

FAPESP's process: 09/14107-6 - Molecular dynamics simulations of hydrolases for saccharification of cellulose and related proteins
Grantee:Érica Teixeira Prates
Support Opportunities: Scholarships in Brazil - Doctorate