Advanced search
Start date
Betweenand


Phase transitions in lamellar systems of phospholipid-water

Full text
Author(s):
Angel Alberto Hidalgo
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Defense date:
Examining board members:
Elisabeth Andreoli de Oliveira; Carlos Eugenio Imbassahy Carneiro; Amando Siuiti Ito; Glaucius Oliva; Ana Maria Carmona Ribeiro
Advisor: Elisabeth Andreoli de Oliveira
Abstract

Phospholipids are amphiphilic molecules that constitute the main component of the cellular membranes. In the presence of water and for concentrations sufficiently high of the lipid, the molecules self-assemble in bilayers separated by water. Inside the bilayers, and depending on the temperature and concentration, the phospholipids can present different packings, giving origin to different mesophases. Three mesophases are well-known: L´, P´ and La . The mesophases L´ and La present planar bilayers, even so, the difference between them is in the hydrocarbons chains. The L´ presents the chains orderly, with a certain tilt related to the normal of the bilayers, and in the La phase the chains are completely disordered. The P´ phase, known in the literature as ripple phase, presents periodic undulation of the bilayers and the carbonic chains with a certain degree of order. There is a great discussion in the literature concerning the origin of the lamellar phases, even though there is no systematic experimental work characterizing the phase transitions between lamellar phases. In this work we investigated the phase transitions in the DMPC/water system (dimiristoyl- phosphatidyl-choline), in the area of the phase diagram where the L´ P´, and La phases are observed. We used the calorimetric DSC technique and x-ray scattering to construct the phase diagram of DMPC/water, and we studied the behavior of the enthalpy associated to the different transitions as a function of the concentration. By means of polarized light microscopy and x-ray scattering we characterized the order induced in samples submitted to shear. The procedure allows us to observe the behavior of the in-plane order in the lamelas by means of x-ray scattering. This study also allowed to see the behavior of the lamellar spacing in the L´ -> P´, and P´, -> La phase transitions. Usually, the L´ -> P´, e P´ -> La are treated as first order transitions. Some models proposes that this transition lines encounters in a Lifshitz point. With high calorimetric resolution we study the behavior of the specific heat in different regions of the phase diagram. The P´ -> La transition for 28% of water, doesn\'t show the expected first order behavior. Instead of that we find that the first order correction to scaling succeeded to describe the specific heat near the transition, but clearly, de experimental data shows some rounding region. This rounded region can be understood in the context of the transitions involving hexatic order, where the tilt and the hexagonal ordering are coupled. This observation is reinforced by the 2D order observed by x ray scattering. We also investigated the existence of the \"ripple\" phase in another phospholipid, DMPG (dimiristoyl-phosphatidyl-glycerol) that just differs from DMPC in the polar head. (AU)