Advanced search
Start date
Betweenand


CDKN1B/p27kip1 gene analysis in patients with multiple endocrine neoplasia type 2 (MEN2)

Full text
Author(s):
Tomoko Sekiya
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Delmar Muniz Lourenço Junior; Patricia Leal de Melo Dahia; Ana Amélia Fialho de Oliveira Hoff; Suemi Marui
Advisor: Sergio Pereira de Almeida Toledo
Abstract

INTRODUCTION: In Multiple Endocrine Neoplasia type 2 (MEN2) the development of medullary thyroid carcinoma (MTC), pheochromocytoma (PHEO) and primary hyperparathyroidism (HPT) are associated with activating germline mutations in RET proto-oncogene. Cases of sporadic MTC may have somatic RET mutations (~ 40%). The phenotypic variability observed in cases with familial MTC/MEN2 and PHEO/MEN2 indicates the probable involvement of additional genetic events that could be responsible for the clinical differences observed in the affected individuals (age development, progression and aggressiveness of the tumor). Other genetic alterations such as RET double mutations, SNPs and specific haplotypes may influence susceptibility, aggressiveness and MEN2 phenotype modulation. However, studies of other genes involved in the tumorigenesis of MEN2 are still in progress. Recently, it was shown that the activated RET controls the expression of cell cycle inhibitory proteins (p18 and p27). Germline mutations in the p27 gene have recently been associated with the susceptibility to neuroendocrine tumors and are associated with the MEN4 syndrome (Multiple endocrine neoplasia type 4). Somatic inactivating mutations p27 are rarely found in many types of tumors. However, several studies have documented that reduced expression and subcellular location of p27 is controlled by post-transductional changes and/or epigenetic factors. OBJECTIVES: This study aimed to evaluate the role of genes recently associated with RET activated in tumors from MEN2 patients and also check whether polymorphisms in the p27 gene would be acting as modulators of phenotype in a large MEN2 family. PATIENTS: We analyzed 66 tumor samples from 36 patients with clinical and genetic diagnosis of MEN2 and from 28 individuals belonging to a large family with FMTC/MEN2A and RET C620R mutation. METHODS: The analyses of somatic p27, p15, p18 and RET were performed by PCR and direct sequencing of DNA and microsatellite analysis was performed for p27 by PCR and capillary electrophoresis. Expression analysis and subcellular localization of p27 protein were performed by Western blot and immunohistochemistry. The analysis of phenotype modulation in MEN2A families was performed by the amplification of exon 1 of the p27 gene in a whole blood sample. RESULTS: There were no somatic mutations in the p27 gene and also in the p15 and p18 genes. However, we verified a low p27 protein expression in MTC/MEN2 and PHEO/MEN2 that showed a definite correlation with the type and aggressiveness of the mutated RET codon, mainly in those tumors from cases with germline RET codon 634 mutations (control vs 634, p=0,05; control vs 634/791, p= 0,032; 620 vs 634, p=0,045; 620 vs 634/791, p= 0,002; 620 vs 634 + 634/791, p=0,036). It was also verified a positive correlation between the immunohistochemistry expression of nuclear p27 subcellular location and the p27 p.V109G TT genotype (p=0,03). CONCLUSIONS: The reduction in the expression of p27 and its subcellular localization are likely to be associated with somatic changes in other genes that control the processes of phosphorylation of p27 protein through post-transductional events (AU)

FAPESP's process: 09/11942-1 - Analysis of CDKN1B/p27kip1 gene in patients with Multiple Endocrine Neoplasia Type 2
Grantee:Tomoko Sekiya
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)