Advanced search
Start date
Betweenand


Fractalkine (CX3CL1) participates in the early stages of inflammation in hypothalamus of obese

Full text
Author(s):
Joseane Morari
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Ciências Médicas
Defense date:
Examining board members:
Licio Augusto Velloso; Fernanda Ortis; Fernanda Guarino De Felice; Sara Teresinha Olalla Saad; Marco Aurélio Ramirez Vinolo
Advisor: Licio Augusto Velloso
Abstract

Studies performed during the last 20 years have shown that obese subjects and experimental models of obesity present a systemic subclinical inflammation. Our group has shown that in experimental obesity the hypothalamus is affected by an inflammatory response and the employment of genetic and pharmacological means to inhibit diet-induced hypothalamic inflammation rescues the obese phenotype and the metabolic disarrangements commonly associated with obesity. Long-chain saturated fatty acids present in the diet are amongst the most important inducers of the hypothalamic inflammation in obesity. The first signs of hypothalamic inflammation can be detected as early as 24 h after the initial exposure to dietary fats. At least two molecular mechanisms have been shown to play a role in the induction of the hypothalamic inflammation in obesity; i.e., activation of TLR4 and induction of endoplasmic reticulum stress. During the early exposition to dietary fats, resident microglia cells are activated and express cytokines that eventually can lead to the induction of inflammatory signaling in the neighboring neurons. The activation of JNK and IKK in neurons results in the induction of hypothalamic resistance to leptin and insulin and, thus, to the loss of the coordinated control of food intake and energy expenditure. As hypothalamic inflammation can be induced a few hours after the initial exposure to dietary fats, it has been suggested that resident microglia are involved in this process. However, as the exposure to dietary fats persists, changes in the pattern of inflammation take place, which may indicate the recruitment of new cells to the inflamed site. In the first part of this study, we evaluate the migration of bone marrow-derived monocytic cells to the hypothalamus of obese animals. Chimera mice were generated by the transplantation of TLR4-expressing bone marrow into TLR4 defective mice and vice-versa. The presence of functional TLR4 in bone marrow-derived cells was required for the complete expression of the obese phenotype. In addition, diet-induced hypothalamic infiltration with bone marrow-derived microglia was obtained only in the presence of functional TLR4 in bone marrow-derived cells. Because the recruitment of bone marrow-derived monocytic cells to a given anatomical site depends invariably on the expression of chemokines, we have raised the hypothesis that, during the initial steps of diet-induced hypothalamic inflammation a (some) chemokine (s) could play an important role in the progression of the inflammatory activity and, consequently, of the obese phenotype. Both humans and outbreed experimental animals display a huge phenotypic variability whenever exposed to environmental conditions that favor obesity. With this concept in mind, we searched for differences in the patterns of hypothalamic inflammation in two strains of mice with different predispositions to obesity and metabolic diseases. The Swiss mice which are prone to obesity, and the Balb-c mice, which are protected from obesity and related metabolic conditions. We identified the chemokine CX3CL1 (fractalkine) as the one, among those that we evaluated, with highest distinction on its hypothalamic expression levels between the two mouse strains; being increased in the hypothalamus of Swiss mice. In the second part of the study we demonstrate that fractakine is induced in hypothalamic neurons by fat-rich diet. In culture, neurons express fractalkine in response to a TNF stimulus preferentially, but also in response to palmitate. The inhibition of hypothalamic expression of fractalkine by siRNA protects mice from glucose intolerance and diet-induced obesity. Moreover, under hypothalamic fractalkine inhibition, diet-induced recruitment of monocytic cells from the bone marrow is severely impaired. We conclude that during the initial steps of diet-induced hypothalamic inflammation, resident microglia cells induce the expression of fractalkine by neighboring neurons, which in turn recruit additional monocytic cells from the bone marrow to maintain the inflammatory process under continuous dietary fatty acid exposure. Thus, fractalkine is one of the earliest signals generated in the hypothalamus during the installation of diet-induced obesity (AU)