Advanced search
Start date
Betweenand


Synthesis and study of colloidal properties of an aluminum polyhydroxy cation pillared smectite

Full text
Author(s):
Lucas Resmini Sartor
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Antonio Carlos de Azevedo; Marcelo Eduardo Alves; Marcelo Metri Corrêa
Advisor: Antonio Carlos de Azevedo
Abstract

In this study, an Al-pillared smectite was synthesized and changes in its colloidal properties were investigated. The pillaring solution was prepared adding dropwise adequate volume of NaOH 0,4M to AlCl3.6H2O 0,2M solution. Then, the pillaring solution was added to a 1% w/w clay slurry with constant stirring. Potentiometric titration, chemical analysis, XRD, FTIR, CEC and N2 sorption/dessoption isotherms analysis were done to characterize the changes in clay properties. Moreover, adsorption experiments were carried out in order to evaluate the capacity of the pillared clays to remove Cu2+ from aqueous solution and to characterize the interaction between adsorbent and adsorbate. The natural clay has a basal spacing of 1.26 nm whereas the pillared clays reached 1.78 nm (500 oC) and 1.80 nm (350 oC) after calcination. Chemical analysis revealed that the montmorillonite used has high content of Fe3+ and the increase in the Al3+ amount in the structure of the pillared clays after pillaring process. The surface area and micropore volume were higher for the pillared clays and the CEC was higher for the natural clay. The pillaring process changed the potentiometric titration curves, wherein the pillared clays exhibited new reactive site. Experimental data were fit to Langmuir, Freundlich and Temkin adsorption equations, being the the first one the best (highest r2 value) for all the clays and lower standard deviation (?g%) for the natural clay. On the other hand, Temkin equation exhibited ?g% value lower for the pillared clays. Thermodynamics parameters demonstrate that the Cu2+ adsorption process is spontaneous for all the clays, but with higher values for the pillared materials. In addition, application of the Dubinin-Radushkevich equation revealed that the bond between the metal and the clay are weak, characterizing a physisorption. (AU)

FAPESP's process: 12/19270-5 - Synthesis and study of colloidal and surface properties of aluminum pillared smectite
Grantee:Lucas Resmini Sartor
Support Opportunities: Scholarships in Brazil - Master