Advanced search
Start date
Betweenand


Lindstedt Series Interlocking Systems Periodic Quasi-periodic

Full text
Author(s):
Daniel Augusto Cortez
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Defense date:
Examining board members:
Joao Carlos Alves Barata; Domingos Humberto Urbano Marchetti; Cesar Rogerio de Oliveira; Ricardo Schwartz Schor; Walter Felipe Wreszinski
Advisor: Joao Carlos Alves Barata
Abstract

In this thesis, through the use of suitable perturbative methods, rigorous results are obtained for two specific dynamical systems. First, we present a mathematical investigation of the phenomenon of dynamical localization in a class of quasi-periodically and periodically time-dependent two-level systems. Our results are based on an interative procedure of elimination of polynomial terms from the Lindstedt series, which is proposed as a solution of a certain associated Riccati equation. Such a procedure is developed here in a systematic way in order to adapt it to the effect of localization in any perturbative order. In the quasi-periodic case, this procedure leads only to a formal well defined Lindstedt series. In the periodic case, a convergent perturbative solution is obtained and, in particular, a convergent perturbative expansion for the secular frequency is presented. The particular case of a monochromatic field is discussed in detail, where numerical computations of the solutions are presented and results are exhibited in terms of certain transition probabilities between the two eigenstates of the system. Second, we consider a perturbed Hill\'s equation of the form + (p0(t) + p1(t)) = 0, where p0 is real analytic and periodic, p1 is real analytic and quasi-periodic and R is small. Assuming Diophantine conditions on the frequencies of the decoupled system i.e., thr frequencies of the external potentials p0nd p1 and the proper frequency of the unperturbed ( = 0) Hills equation and making only one specific non-degeneracy assumption on the perturbating potential p1, we prove that quasi-periodic solutions of the unperturbed equation are stable if lies in a Cantor set of relatively large measure in [-0,0] C R where 0 is small enough. Our method is based on a resummation procedure of a formal Lindstedt series obtained as a solution of a genrelized Riccati equation associated to Hills problem. Finally, we stress that the two systems above are mathematically related. Indeed, both pass through the solutions of certain strongly related Riccati euqations. Such solutions are scarched in terms of Lindstedt series expandend in a suitable pertrubative parameter. (AU)