Advanced search
Start date
Betweenand


Coating films deposited on to wood surface by cold plasma technique

Full text
Author(s):
Washington Luiz Esteves Magalhães
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Milton Ferreira de Souza; Carlito Calil Junior; Alcides Lopes Leão; Lucia Helena Innocentini Mei; Rogério Pinto Mota
Advisor: Milton Ferreira de Souza
Abstract

Solid wood is a natural polymer composite that can be subjected to a wide variety of treatments to make it suitable for specific technical applications. The greatest disadvantage of solid wood is its hygroscopicity. Moist wood is vulnerable to attack by fungi and termites, and loses its dimensional stability. The most widely used treatments for solid wood are impregnation and coating with paint and varnish. A promising future technique for solid wood surface coating is a plasma treatment in a glow discharge. Cold plasmas were produced by electrical glow discharges in a gas medium at reduced pressure. The precursor gases used were ethylene, acetylene, 1-butene, and vapor of vinyl acetate. The treatment caused the solid softwood surface to become hydrophobic; 1-butene-plasma produced the best results. Although the surface plasma treatment resulted in water repellence, permeability to water vapor remained. Using a mixture of tetraethyl orthosilicate vapor (TEOS) and oxygen (O2) it was possible to investigate the inability of the glow discharge to coat the surface of wood orifices. Deposition of non-conventional polymeric thin films were observed on solid wood substrate after injecting a 1-butene-argon gas mixture into a glow discharge chamber. The deposited film showed water repellence, chemical resistance, insolubility in most common organic solvents and some protection against weathering. Infrared analyses revealed differences between conventional and plasma polymerized 1-butene. Plasma chemistry can be controlled by external conditions of plasma, such as input power, gas flow rate, pressure, and the time of exposure. Using low energetic plasmas the deposited film can be polymer like with a less crosslinked structure. Two different techniques - known capacitive coupled plasma and plasma jet - were tested in this study. Both these techniques appear promising in view of the low vacum level and low frequency, low power supply required, the lack of pollutants and solventes, and the use of industrial chemicals. (AU)