Advanced search
Start date
Betweenand


Image foresting transform with non-smooth connectivity functions: adaptive weights, boundary polarity, and shape constraints

Full text
Author(s):
Lucy Alsina Choque Mansilla
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Defense date:
Examining board members:
Paulo Andre Vechiatto de Miranda; Marcel Parolin Jackowski; João Paulo Papa
Advisor: Paulo Andre Vechiatto de Miranda
Abstract

Segmenting an image consist in to partition it into relevant regions for a given application, as to isolate an object of interest in the domain of an image. Segmentation is one of the most fundamental and challenging problems in image processing and computer vision. It has played an important role, for example, in neurology research, involving images of Magnetic Resonance (MR), for the purposes of diagnosis and treatment of diseases related to changes in the anatomy of the human brain. Segmentation methods based on the Image Foresting Transform (IFT), with smooth connectivity functions, have optimum results, according to the criterion of path optimality described in the original IFT paper, and have been successfully used in many applications as, for example, the segmentation of MR images of 1.5 Tesla. However, these methods present a lack of boundary regularization constraints and may produce segmentations with quite irregular and undesired boundaries. They also do not distinguish well between similar boundaries with opposite orientations, and have high sensitivity to the arc-weight estimation of the graph, producing poor results in images with strong inhomogeneity effects. In this work, we propose extensions of the IFT framework, from the theoretical and experimental points of view, through the use of non-smooth connectivity functions for region-based interactive image segmentation. The optimality of the new methods is supported by the maximization of graph cut energies, or as the result of a sequence of paths optimizations in residual graphs. We have as main results: The design of more adaptive and flexible connectivity functions, with the use of dynamic weights, that allow better handling of images with strong inhomogeneity. The use of directed graphs to exploit the boundary polarity of the objects in region-based segmentation, and the use of shape constraints that help to regularize the segmentation boundary, by favoring the segmentation of objects with more regular shapes. These advances were only made possible by the use of non-smooth functions. Therefore, the main contribution of this work is the theoretical support for the usage of non-smooth functions, which were until now avoided in literature, opening new perspectives in the research of image processing using graphs. (AU)

FAPESP's process: 12/06911-2 - Image Foresting Transform using non-smooth connectivity functions and its applications in the segmentation of medical and natural images with strong heterogeneity
Grantee:Lucy Alsina Choque Mansilla
Support Opportunities: Scholarships in Brazil - Master