Preparation and characterization of TiO2 and ZnO nanoparticles composites containi...
Layered solid and gel polyelectrolytes for application in dye solar cells
![]() | |
Author(s): |
Jilian Nei de Freitas
Total Authors: 1
|
Document type: | Master's Dissertation |
Press: | Campinas, SP. |
Institution: | Universidade Estadual de Campinas (UNICAMP). Instituto de Química |
Defense date: | 2005-05-25 |
Examining board members: |
Marco Aurelio De Paoli;
Koiti Araki;
Lauro Tatsuo Kubota
|
Advisor: | Marco Aurelio De Paoli |
Abstract | |
TiO2 dye-sensitized solar cells assembled with polymer electrolyte were investigated aiming at the construction of a 9 V module. The TiO2 film deposited on substrates of FTO (fluorine tin oxide) on glass was obtained through the modification of a colloidal oxide suspension in water . To obtain a film with good performance, a suspension containing 0.45 g mL of TiO2 and 33 wt % of polyethyleneglycol with molar weight of 20000 was employed. The electrolyte consisted of Nal and I2 dissolved in poly(ethylene oxide-co-epichlorydrin) containing the monomers in the molar ratio 87:13. The maximum ionic conductivity for this system occurred for a concentration of salt of 15 wt % in relation to the polymer matrix; 2.7 x 10 S cm under relative humidity lower than 1.0 ppm and 30°C. To increase the ionic conductivity, g-butyrolactone was added to the electrolyte as a plasticizer, maintaining the salt concentration constant in relation to the polymer. The measured ionic conductivity and diffusion coefficient for the plasticized electrolyte were both increased by ca. one order of magnitude. Both, optimized TiO2 suspension and electrolyte, were applied in solar cells assembled with active area of 1.0 or 4.5 cm. The smaller cells were investigated under 10 mW cm irradiation, with a Xe lamp, and the efficiency of energy conversion was 23 %. The larger cells were characterized directly under the Sun with an average efficiency of 0.9 % (at 12:00 h). These were used to assemble a 9 V module by connecting in series 16 cells. The integrated average daily power was 183 mW. In summary, this work demonstrated that it is feasible to assemble a module with dyesensitized solar cells employing a plasticized polymer electrolyte. The performance of the modules exceeded all expectations and their stability is the main challenge to allow a future commercial scale application. (AU) |