Advanced search
Start date
Betweenand


TiO2 films preparation for dye sensitized solar cells application

Full text
Author(s):
Rogerio Silva Nono
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Química
Defense date:
Examining board members:
Marco Aurelio De Paoli; Debora Gonçalves; Inez Valéria Pagotto Yoshida
Advisor: Marco Aurelio De Paoli
Abstract

The structure and morfology of TiO2 films provide a great influence in the eficiency of light conversion to energy in the solar cells of TiO2/dye, mainly when these devices are prepared with polymer electrolyte. The goal of this work consisted in optimize the TiO2 films aiming to get films with porous structure and more suitable to apllied in solar cells with polymer electrolyte. The TiO2 films were deposited onto glass-FTO ("Fluorine doped tin oxide") utilizing TiO2 suspensions prepared by differents methodologies. Aqueous suspensions of oxide were obtained by sol-gel route from hydrolysis and condensation of titanium isopropoxide stabilized with poly(ethylene glycol). The films were prepared by template technique, utilizing porous celulose acetate membranes, the material produced has large porous structures inherited from the initial membrane form. After the deposition of films of TiO2 suspension, the photoelectrodes were submited to a thermal tratament the 450 °C to eliminate organic material. Oxides films were characterized by scanning electron microscopy, X-ray diffraction, thermogravimetry, rugosity and thickness measurements, particles size, elementar analysis and absorption spectroscopy. The TiO2 films were sensitized with a Ruthenium dye (N3, Solaronix) and used as photoelectrodes in the assemble of solar cells with polymer electrolyte (poly(ethylene oxide-co-epichlorohydrin)84:16, NaI e I2). The devices were investigated through photocurrent versus potential curves and electrochemistry impedance spectroscopy. Better results were obtained when we used photoelectrodes with double layer of TiO2 films deposited onto glass-FTO. This cells presented, short circuit current Isc = 3.8 mA cm, open circuit potential Voc = 0.75 V and efficiency h = 1.3 % (h = 2.6 % under 10 mW cm). Electrochemistry impedance spectroscopy revealed that the series resistance of cells increased with two films, but this methodology enhanced the adhesion of the TiO2 film onto glass-FTO, and improved the efficiency of the cells. (AU)