Advanced search
Start date
Betweenand


Determination of piglet\'s rectal temperature and respiratory rate through body surface temperature in a climatic chamber

Full text
Author(s):
Gustavo Marques Mostaço
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Késia Oliveira da Silva Miranda; Sergio Nascimento Duarte; Silvia Regina Lucas de Souza
Advisor: Késia Oliveira da Silva Miranda
Abstract

Human constant influence in handling activities, besides raising production costs, becomes another stress source for the animals. In this sense, it becomes necessary the development of alternative methods, that can remotely monitor, in real time, animal\'s physical conditions, together with remote facilities control. In terms of identifying comfort or stressful thermal situations for animals, some indicators can be handy, such as rectal temperature (RT), which is a good indicator of the core body temperature, as well as, the respiratory rate (RR). Although, with the raising concerns about animal welfare, several questions are raised against invasive methods, encouraging the search for alternatives to RT measuring. The determination of body surface temperature values, trying to correlate them to RT and RR, emerges as an alternative. Thus, it\'s aimed, with this research, to identify the most adequate swine body surface region, in nursery phase, which presents better correlation with RT and RR. For that, an experiment was conducted, divided in two stages: stage 1) pre-experiment, being conducted with two animals in a climate chamber, varying temperature conditions and testing sensor fixation and data collection methods previously proposed; and stage 2) main experiment. The last one was conducted in a climate chamber, with five Landrace x Large White piglets, 30 days aged, from the same litter and of the same sex (female). Temperature conditions inside the chamber were varied from 14°C to 35.5°C, attaining stressful situations both for cold and heat, being calculated the enthalpy for this study purposes. The statistical design used was the completely randomized, with one factor only, the ambient enthalpy, in seven levels (31.26; 39.56; 51.12; 59.24; 74.82; 82.96; 94.26 kJ.kg of dry air-1). Repeated measures were taken in 30 minutes intervals, in six different body regions: head (A), shoulder (B), loin (C), ham (D), ear (E) and tympanic (F). For regions from A to E, two different methods were used: temperature datalogger Thermochron iButton® - DS1921G and infrared thermometer Fluke® 566. For region F, a forehead and ear infrared thermometer G-Tech - T1000 was used. All of them had five replicates of measures for each variable, in each environment situation. With the obtained data, it was possible to propound multiple regression equations for RT and RR, the last one being shown by principal components analysis as a better candidate to correlate to body surface temperatures and because it\'s a good indicator of the animal\'s thermal stress situation. By means of these results it was possible to observe that the tympanic region arises as the better option for monitoring RT and RR through infrared thermometer (TiF), while when using body surface temperature sensors, the best option was the ear (TbE) for predicting RT, and the loin region (TbC) for predicting RR. (AU)

FAPESP's process: 11/16590-6 - IDENTIFICATION OF THE THERMAL WINDOW AT PIGLETS' SKIN FOR THE INSTALLATION OF AN EXTERNAL SENSOR REPRESENTING THE CORE BODY TEMPERATURE
Grantee:Gustavo Marques Mostaço
Support Opportunities: Scholarships in Brazil - Master