Systems of transversal sections for 3-dimensional Reeb flows
Hamiltonian dynamics near critical energy levels and homoclinic orbits to the cent...
On three-dimensional Reeb flows: implied existence of periodic orbits and a dynami...
![]() | |
Author(s): |
Naiara Vergian de Paulo
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI) |
Defense date: | 2014-06-10 |
Examining board members: |
Pedro Antonio Santoro Salomão;
Umberto Leone Hryniewicz;
Leonardo de Magalhães Macarini;
Clodoaldo Grotta Ragazzo;
Joachin Weber
|
Advisor: | Pedro Antonio Santoro Salomão |
Abstract | |
In this work we study Hamiltonian dynamics in $\\mathbb R ^4$ restricted to energy levels close to critical levels. More precisely, we consider a Hamiltonian function $H:\\mathbb R ^4 \\to \\mathbb R$ containing a saddle-center equilibrium point $p_c \\in H^ -1 (0)$ and we assume that $p_c$ lies on a strictly convex singular set $S_0 \\subset H^ -1 (0)$. Then we prove that the energy levels $H^ -1 (E)$, with $E>0$ sufficiently small, contain a closed $3$-ball $S_E$ near $S_0$ admitting a system of transverse sections $F_E$, called a $2-3$ foliation. $F_E$ is a singular foliation of $S_E$ and its singular set consists of two periodic orbits $P_{2,E}\\subset \\partial S_E$ and $P_{3,E}\\subset S_E\\setminus \\partial S_E$. The orbit $P_{2,E}$ is hyperbolic inside the energy level $H^ -1 (E)$, lies on the center manifold of the saddle-center $p_c$, has Conley-Zehnder index $2$ and is the asymptotic limit of two rigid planes of $F_E$, which compose the $2$-sphere $S_E$ together with $P_{2,E}$. The orbit $P_{3,E}$ has Conley-Zehnder index $3$ and is the asymptotic limit of a one parameter family of planes of $F_E$ contained in $S_E \\setminus \\partial S_E$. A rigid cylinder connecting the orbits $P_{3,E}$ and $P_{2,E}$ completes the foliation $F_E$. Since $F_E$ is a system of transverse sections, all its regular leaves are transverse to the Hamiltonian flow of $H$. As a consequence of the existence of such foliation in $S_E$, we conclude that the hyperbolic orbit $P_{2,E}$ admits at least one homoclinic orbit contained in $S_E\\setminus \\partial S_E$. (AU) | |
FAPESP's process: | 09/18586-6 - Hamiltonian dynamics near critical energy levels and homoclinic orbits to the central manifold of a saddle-center |
Grantee: | Naiara Vergian de Paulo |
Support Opportunities: | Scholarships in Brazil - Doctorate |