Advanced search
Start date
Betweenand


Effects of the participation of steroid-like compounds from air pollution in the airway epithelium of male and female mice

Full text
Author(s):
Kelly Yoshizaki
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Mariangela Macchione; Carla Máximo Prado; Sergio Henrique Kiemle Trindade; Perola de Castro Vasconcellos
Advisor: Mariangela Macchione
Abstract

The nasal epithelium is the first portion of the respiratory system to reach contact with the external environment. Air pollution particles, mainly the organic compounds absorbed into them, may act as endocrine releasers. The aryl hydrocarbon (AhR) receptor is an important competitor of estrogenic receptors-beta (ERbeta) that regulate transcription of gene coding for xenobiotic-metabolizing enzymes (cytochrome P450 enzymes). The aim of this study is to identify and quantify in the nasal epithelium of male and female mice in different estrous cycle phases related with ERbeta, AhR, CYP1A1, 1A2, 1B1 and the mucus profile. Male (n=32) and female (n=84) BALB/c mice were exposed to ambient air and PM2.5 concentrated at 600 ug.m-³ in an ambient particle concentrator with a particulate matter diameter of 2.5 um (PM2.5). Females were subdivided in three estrous cycles: proestrus, estrus and diestrus. Nasal epithelium was evaluated through RT-PCR and immunohistochemistry for the expression of ERbeta (protein), Erbeta-1 and Erbeta-2 (gene expression), AhR (protein and gene expression) and Cyp1a1, Cyp1a2 and Cyp1b1 (gene expression). Morphometry was applied for evaluation of mucus profile: acid - Alcian Blue (AB+) and neutral - Periodic Acid Schiff\'s (PAS+). Exposure happened for 5 days/week, for 45 ± 55 days. There were differences in Erbeta-2 mRNA in response to exposition to CPAs (p=0.016), and a significant decrease in female compared male mice (p=0.036). Cyp1b1 mRNA was significantly smaller in the CPAs-exposed group compared with the ambient air group in diestrus female mice (p=0.036). The ERbeta expression increased in the nasal epithelium of CPAs-exposed females in the estrus cycle (p=0.005), and the AhR expression decreased in the proestrus cycle of CPAs-exposed females (p=0.048). The exposure to the CPAs led to an increase in the acidic content of mucus in male mice (p=0.048), and decreased in female mice (p=0.040), compared to the ambient air group. This study showed there were different responses in the nasal epithelia of male and female mice exposed to air pollution, which could be related to the predisposition of the females to present more susceptibility to airway respiratory diseases (AU)