Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Combining re-ranking and rank aggregation methods for image retrieval

Full text
Guimaraes Pedronette, Daniel Carlos ; Torres, Ricardo da S.
Total Authors: 2
Document type: Journal article
Source: MULTIMEDIA TOOLS AND APPLICATIONS; v. 75, n. 15, p. 9121-9144, AUG 2016.
Web of Science Citations: 2

This paper presents novel approaches for combining re-ranking and rank aggregation methods aiming at improving the effectiveness of Content-Based Image Retrieval (CBIR) systems. Given a query image as input, CBIR systems retrieve the most similar images in a collection by taking into account image visual properties. In this scenario, accurately ranking collection images is of great relevance. Aiming at improving the effectiveness of CBIR systems, re-ranking and rank aggregation algorithms have been proposed. However, different re-ranking and rank aggregation approaches, applied to different image descriptors, may produce different and complementary image rankings. In this paper, we present four novel approaches for combining these rankings aiming at obtaining more effective results. Several experiments were conducted involving shape, color, and texture descriptors. The proposed approaches are also evaluated on multimodal retrieval tasks, considering visual and textual descriptors. Experimental results demonstrate that our approaches can improve significantly the effectiveness of image retrieval systems. (AU)

FAPESP's process: 13/08645-0 - Re-Ranking and rank aggregation approaches for image retrieval tasks
Grantee:Daniel Carlos Guimarães Pedronette
Support type: Research Grants - Young Investigators Grants