Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Cancer cachexia differentially regulates visceral adipose tissue turnover

Full text
Author(s):
Franco, Felipe de Oliveira ; Lopes, Magno Alves ; Henriques, Felipe dos Santos ; das Neves, Rodrigo Xavier ; Bianchi Filho, Cesario ; Batista, Jr., Miguel Luiz
Total Authors: 6
Document type: Journal article
Source: Journal of Endocrinology; v. 232, n. 3, p. 493-500, MAR 2017.
Web of Science Citations: 5
Abstract

Cancer cachexia (CC) is a progressive metabolic syndrome that is marked by severe body weight loss. Metabolic disarrangement of fat tissues is a very early event in CC, followed by adipose tissue (AT) atrophy and remodelling. However, there is little information regarding the possible involvement of cellular turnover in this process. Thus, in this study, we evaluated the effect of CC on AT turnover and fibrosis of mesenteric (MEAT) and retroperitoneal (RPAT) adipose tissue depots as possible factors that contribute to AT atrophy. CC was induced by a subcutaneous injection of Walker tumour cells (2 x 107) in Wistar rats, and control animals received only saline. The experimental rats were randomly divided into four experimental groups: 0 days, 4 days, 7 days and 14 days after injection. AT turnover was analysed according to the Pref1/Adiponectin ratio of gene expression from the stromal vascular fraction and pro-apoptotic CASPASE3 and CASPASE9 from MEAT and RPAT. Fibrosis was verified according to the total collagen levels and expression of extracellular matrix genes. AT turnover was verified by measurements of lipolytic protein expression. We found that the Pref1/Adiponectin ratio was decreased in RPAT (81.85%, P < 0.05) with no changes in MEAT compared with the respective controls. CASPASE3 and CASPASE9 were activated on day 14 only in RPAT. Collagen was increased on day 7 in RPAT (127%) and MEAT (4.3-fold). The Collagen1A1, Collagen3A1, Mmp2 and Mmp9 mRNA levels were upregulated only in MEAT in CC. Lipid turnover was verified in RPAT and was not modified in CC. We concluded that the results suggest that CC affects RPAT cellular turnover, which may be determinant for RPAT atrophy. (AU)

FAPESP's process: 12/00488-0 - Balance between extracellular matrix and apoptosis in white adipose tissue in cachexia induced rats
Grantee:Felipe de Oliveira Franco
Support Opportunities: Scholarships in Brazil - Scientific Initiation
FAPESP's process: 15/19259-0 - Effects of adipose tissue remodeling during cachexia in gastrointestinal cancer patients: potential role of TLR4 receptor during cachexia-induced browning of WAT
Grantee:Miguel Luiz Batista Junior
Support Opportunities: Regular Research Grants