The Lactate Minimum Test: Concept, Methodological ... - BV FAPESP
Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

The Lactate Minimum Test: Concept, Methodological Aspects and Insights for Future Investigations in Human and Animal Models

Full text
Author(s):
Messias, Leonardo H. D. ; Gobatto, Claudio A. ; Beck, Wladimir R. ; Manchado-Gobatto, Flvia B.
Total Authors: 4
Document type: Review article
Source: FRONTIERS IN PHYSIOLOGY; v. 8, JUN 8 2017.
Web of Science Citations: 3
Abstract

In 1993, Uwe Tegtbur proposed a useful physiological protocol named the lactate minimum test (LMT). This test consists of three distinct phases. Firstly, subjects must perform high intensity efforts to induce hyperlactatemia (phase 1). Subsequently, 8 min of recovery are allowed for transposition of lactate from myocytes (for instance) to the bloodstream (phase 2). Right after the recovery, subjects are submitted to an incremental test until exhaustion (phase 3). The blood lactate concentration is expected to fall during the first stages of the incremental test and as the intensity increases in subsequent stages, to rise again forming a ``U{''} shaped blood lactate kinetic. The minimum point of this curve, named the lactate minimum intensity (LMI), provides an estimation of the intensity that represents the balance between the appearance and clearance of arterial blood lactate, known as the maximal lactate steady state intensity (iMLSS). Furthermore, in addition to the iMLSS estimation, studies have also determined anaerobic parameters (e.g., peak, mean, and minimum force/power) during phase 1 and also the maximum oxygen consumption in phase 3; therefore, the LMT is considered a robust physiological protocol. Although, encouraging reports have been published in both human and animal models, there are still some controversies regarding three main factors: (1) the influence of methodological aspects on the LMT parameters; (2) LMT effectiveness for monitoring training effects; and (3) the LMI as a valid iMLSS estimator. Therefore, the aim of this review is to provide a balanced discussion between scientific evidence of the aforementioned issues, and insights for future investigations are suggested. In summary, further analyses is necessary to determine whether these factors are worthy, since the LMT is relevant in several contexts of health sciences. (AU)

FAPESP's process: 14/10336-9 - Effect of different training models with load control over physiological parameters, genic expressions and protein contents of HIF-1 alpha, PGC-1 alpha, MCT1 and MCT4: relationship with performance and spontaneous activity of swimming rats
Grantee:Fúlvia de Barros Manchado Gobatto
Support Opportunities: Regular Research Grants