Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Proteomics-based identification of differentially abundant proteins reveals adaptation mechanisms of Xanthomonas citri subsp citri during Citrus sinensis infection

Full text
Author(s):
Show less -
Moreira, Leandro M. ; Soares, Marcia R. ; Facincani, Agda P. ; Ferreira, Cristiano B. ; Ferreira, Rafael M. ; Ferro, Maria I. T. ; Gozzo, Fabio C. ; Felestrino, Erica B. ; Assis, Renata A. B. ; Garcia, Camila Carriao M. ; Setubal, Joao C. ; Ferro, Jesus A. ; de Oliveira, Julio C. F.
Total Authors: 13
Document type: Journal article
Source: BMC Microbiology; v. 17, JUL 11 2017.
Web of Science Citations: 4
Abstract

Background: Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. A proteomic analysis under in planta infectious and non-infectious conditions was conducted in order to increase our knowledge about the adaptive process of Xac during infection. Results: For that, a 2D-based proteomic analysis of Xac at 1, 3 and 5 days after inoculation, in comparison to Xac growth in NB media was carried out and followed by MALDI-TOF-TOF identification of 124 unique differentially abundant proteins. Among them, 79 correspond to up-regulated proteins in at least one of the three stages of infection. Our results indicate an important role of proteins related to biofilm synthesis, lipopolysaccharides biosynthesis, and iron uptake and metabolism as possible modulators of plant innate immunity, and revealed an intricate network of proteins involved in reactive oxygen species adaptation during Plants'Oxidative Burst response. We also identified proteins previously unknown to be involved in Xac-Citrus interaction, including the hypothetical protein XAC3981. A mutant strain for this gene has proved to be non-pathogenic in respect to classical symptoms of citrus canker induced in compatible plants. Conclusions: This is the first time that a protein repertoire is shown to be active and working in an integrated manner during the infection process in a compatible host, pointing to an elaborate mechanism for adaptation of Xac once inside the plant. (AU)