Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Enhanced NIR-I emission from water-dispersible NIR-II dye-sensitized core/active shell upconverting nanoparticles

Full text
Author(s):
Hazra, Chanchal [1] ; Ullah, Sajjad [2, 1] ; Serge Correales, York E. [1] ; Caetano, Lais G. [1] ; Ribeiro, Sidney J. L. [1]
Total Authors: 5
Affiliation:
[1] Sao Paulo State Univ, Inst Chem, UNESP, BR-14800060 Araraquara, SP - Brazil
[2] Univ Peshawar, Inst Chem Sci, Peshawar 25120 - Pakistan
Total Affiliations: 2
Document type: Journal article
Source: JOURNAL OF MATERIALS CHEMISTRY C; v. 6, n. 17, p. 4777-4785, MAY 7 2018.
Web of Science Citations: 7
Abstract

Recently, there has been a surge in research studies directed towards near-infrared (NIR) dye-sensitized upconverting nanoparticles (UCNPs) as they carry the prominent advantages of a broader absorption range and enhanced upconversion efficiency. Unfortunately, however, the UCNPs combined with the native form of NIR dye are of little use for biological imaging in the NIR-I or NIR-II window as the dye- sensitization process is mostly carried out in non-aqueous media. To overcome this shortcoming, we propose to employ a water-dispersible NIR-II dye (IR-1061) to sensitize core/active shell UCNPs and achieve sufficiently high upconversion quantum efficiency in aqueous media. We have particularly focused on achieving strong NIR-I emission rather than visible upconversion emission as the latter suffers from the problem of shallow tissue penetration depth. For this purpose, Pluronic F68-encapsulated water-dispersible IR-1061 dye was coupled with polyethyleneimine (PEI)-coated NaYF4:Tm3+/Yb3+@NaYF4:Yb3+ core/active shell UCNPs. We thus achieved a 283% enhancement in NIR-I emission (i.e. 800 nm emission of Tm3+ ion) from water-dispersible NIR-II dye-sensitized core/active shell UCNPs via doping of ytterbium ions (Yb3+) in the UCNP shell, which bridged the energy transfer from the dye to the UCNP core. Practically, in comparison with the native form of the dye, this water-dispersible dye can also efficiently harvest irradiation energy, which is nonradiatively transferred to Yb3+ ions in the shell and subsequently to Yb3+ ions in the core. The latter sensitizes Tm3+ ions positioned in the core, thus generating upconversion luminescence from the UCNPs. We envision that our water-dispersible NIR-II dye-sensitized core/active shell UCNPs are not only potential candidates for a broad spectrum of photonic applications but that they will also find new opportunities in several biological applications. (AU)

FAPESP's process: 15/18733-0 - Upconverting Lanthanide Nanoparticles for Biosensing Applications
Grantee:Chanchal Hazra
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 15/22875-4 - Development of Efficient IR/Visible light-driven Photocatalysts for Photocatalytic Applications under Solar light radiation
Grantee:Sajjad Ullah
Support Opportunities: Scholarships in Brazil - Post-Doctoral