Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Estimation of the bulk and shear moduli of soil surrounding a plastic water pipe using measurements of the predominantly fluid wave in the pipe

Full text
Author(s):
Scussel, O. [1, 2] ; Brennan, M. J. [2] ; Muggleton, J. M. [3] ; Almeida, F. C. L. [4] ; Paschoalini, A. T. [2]
Total Authors: 5
Affiliation:
[1] UTFPR Fed Univ Technol Parana, Dept Math, Ave Alberto Carazzai 1640, BR-86300000 Cornelio Procopio, Parana - Brazil
[2] UNESP Sao Paulo State Univ, Dept Mech Engn, BR-15385000 Ilha Solteira, SP - Brazil
[3] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants - England
[4] UNESP Sao Paulo State Univ, Dept Biosyst Engn, BR-17602496 Tupa, SP - Brazil
Total Affiliations: 4
Document type: Journal article
Source: JOURNAL OF APPLIED GEOPHYSICS; v. 164, p. 237-246, MAY 2019.
Web of Science Citations: 0
Abstract

Leak noise correlators are commonly used to detect and locate leaks in buried water pipes. They use the cross-correlation function between leak noise signals measured using hydrophones or accelerometers placed on the pipe either side of the leak. The efficacy of a correlator is dependent upon knowledge of the speed at which the leak noise propagates along the pipe as well as how much it attenuates with distance. The leak noise is carried in a predominantly fluid-borne wave in the pipe, which is heavily influenced by the pipe and soil properties. Although the pipe properties can be determined relatively easily, estimation of the soil properties surrounding the pipe is more problematic. It is desirable to have an accurate estimate of the soil properties, so that current models can be developed and used to improve understanding of leak noise propagation and hence leak detection capabilities. In this paper a novel approach to determining the bulk and shear moduli of the soil from measurements of the predominantly fluid-borne wave in a buried plastic pipe, is described. The measured data are compared with corresponding data predicted from a model, and the soil properties are determined using an optimization algorithm. The method is applied to two different sites, one in the UK, where the soil properties surrounding the pipe are representative of sandy soil, and one in Brazil, where the surrounding soil has properties that are representative of clay soil. It is found that the bulk and shear modulus can be estimated in the pipe buried in sandy soil, but in the clay soil it is only possible to estimate the shear modulus. (C) 2019 Elsevier B.V. All rights reserved. (AU)

FAPESP's process: 17/14432-0 - Analysis of sensors and different excitation mechanisms in locating and detecting leaks in buried water distribution pipes
Grantee:Oscar Scussel
Support Opportunities: Scholarships in Brazil - Post-Doctoral