Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Phenotyping of new hybrid citrus rootstocks under water deficit reveals conserved and novel physiological attributes of drought tolerance

Full text
Author(s):
Silva, Matheus C. [1] ; Sousa, Andressa R. O. [1] ; Cruz, Elaine S. [1] ; Schlichting, Alessana F. [2] ; Soares Filho, Walter S. [3] ; Gesteira, Abelmon S. [3] ; Coelho Filho, Mauricio A. [3] ; Costa, Marcio G. C. [1]
Total Authors: 8
Affiliation:
[1] Univ Estadual Santa Cruz, Ctr Biotechnol & Genet, Biol Sci Dept, BR-45662900 Ilheus, BA - Brazil
[2] Univ Fed Mato Grosso, Inst Agr & Technol Sci, BR-78735910 Rondonopolis, MT - Brazil
[3] Embrapa Cassava & Fruits, BR-44380000 Cruz Das Almas, BA - Brazil
Total Affiliations: 3
Document type: Journal article
Source: ACTA PHYSIOLOGIAE PLANTARUM; v. 41, n. 6 JUN 2019.
Web of Science Citations: 0
Abstract

The present study aimed to investigate, under controlled conditions, the physiological attributes of drought tolerance induced by new hybrid citrus rootstocks with demonstrated potential to enhance productive efficiency in sweet orange under water-limiting conditions in the field. Twelve-month-old `Valencia' sweet orange grafted on four new hybrid rootstocks were cultivated in plastic pots filled with 1.5 kg dm(-3) of soil, under greenhouse conditions, and subjected to different intensities of drought stress defined on the basis of predawn leaf water potential. The results showed that the net rate of photosynthesis, stomatal conductance, transpiration and intercellular carbon concentration did not differentiate between plants maintained under moderate and severe stress conditions, evidencing high water use efficiency. The rootstocks were also able to induce osmotic adjustment, cell wall stiffening, decreased osmotic potential at the turgor loss point (Psi(TLP)) and stimulation of guaiacol peroxidase (GPX) activity and gene expression in leaves of the drought-stressed plants, allowing the maintenance of cell turgor, oxidative status, carboxylation efficiency and photosynthesis, irrespective of the intensity of drought stress. The rootstocks also showed a constitutively or drought-induced high density of fine roots, contributing to the soil-water uptake. These results revealed various attributes underlying drought tolerance in citrus and provided a valuable reference for developing drought-tolerant citrus rootstocks. (AU)

FAPESP's process: 14/50880-0 - INCT 2014: comparative and functional genomics and citrus-assisted breeding
Grantee:Marcos Antonio Machado
Support Opportunities: Research Projects - Thematic Grants