Full text | |
Author(s): |
Total Authors: 4
|
Affiliation: | [1] Univ Montpellier, CNRS, Inst Montpellierain Alexander Grothendieck, Montpellier - France
[2] Univ Republ, Fac Ingn, Inst Matemat & Estadist Rafael Laguardia, Republica - Uruguay
[3] Univ Sao Paulo, IME, Dept Matemat, Sao Paulo - Brazil
[4] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Buenos Aires, DF - Argentina
[5] Univ Buenos Aires, CONICET, IMAS, Buenos Aires, DF - Argentina
Total Affiliations: 5
|
Document type: | Journal article |
Source: | Proceedings of the American Mathematical Society; v. 148, n. 6, p. 2421-2432, JUN 2020. |
Web of Science Citations: | 0 |
Abstract | |
We describe how the Hochschild (co)homology of a bound quiver algebra changes when deleting or adding arrows to the quiver. The main tools are relative Hochschild (co)homology, the Jacobi-Zariski long exact sequence obtained by A. Kaygun, and a length one relative projective resolution of tensor algebras. (AU) | |
FAPESP's process: | 14/09310-5 - Algebraic structures and their representations |
Grantee: | Vyacheslav Futorny |
Support Opportunities: | Research Projects - Thematic Grants |