Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Quantum mechanics meets scaling theory near the critical point

Full text
Author(s):
Bistafa, Carlos [1] ; Ramos, Tarcius N. [1] ; Coutinho, Kaline [1] ; Canuto, Sylvio [1]
Total Authors: 4
Affiliation:
[1] Univ Sao Paulo, Inst Fis, Rua Matao 1371, BR-05508090 Sao Paulo, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: THEORETICAL CHEMISTRY ACCOUNTS; v. 139, n. 4 APR 9 2020.
Web of Science Citations: 0
Abstract

The critical point is believed to be not amenable to quantum mechanical calculations because the correlation length goes to infinity, the density is largely inhomogeneous and some thermodynamic properties diverge. For these reasons, until very recently all theoretical information of the critical point has been obtained by statistical physics and nothing was known about the electronic structure. Employing a sequential quantum mechanical/molecular mechanical (S-QM/MM) approach for a nonpolar atomic fluid, we study the behavior of the dielectric constant at different temperatures, ranging from dense fluid to supercritical condition. Our primary focus lies on the vicinity of the critical point. By using quantum mechanical calculations with thermodynamic condition, we perfectly reproduce the behavior found previously for classical monoatomic fluid by using scaling functions and renormalization theory that in the vicinity of the critical point the dielectric constant shares the critical behavior of the internal energy and, although the dielectric constant remains finite, its variation with temperature diverges. This perfect agreement leads credence to multiscale QM/MM methods and suggests the possibility of obtaining theoretical information about the electronic structure of a fluid near the critical point. (AU)

FAPESP's process: 15/14189-3 - Two-Photon Absorption Spectroscopy in Organic Molecules Including Solvent Effects
Grantee:Tárcius Nascimento Ramos
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 14/50983-3 - INCT 2014: complex fluids
Grantee:Antonio Martins Figueiredo Neto
Support Opportunities: Research Projects - Thematic Grants