Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Mate selection provides similar genetic progress and average inbreeding than optimum contribution selection in the long-term

Full text
Author(s):
Yoshida, Grazyella Massako [1, 2] ; Manuel Yanez, Jose [1, 3] ; de Queiroz, Sandra Aidar [2] ; Carvalheiro, Roberto [4, 2]
Total Authors: 4
Affiliation:
[1] Univ Chile, Fac Ciencias Vet & Pecuarias, Av Santa Rosa 11735, Santiago 8820808 - Chile
[2] Sao Paulo State Univ UNESP, Sch Agr & Veterinarian Sci, Dept Anim Sci, Via Acesso Prof Paulo Donato Castellane, BR-14884900 Jaboticabal, SP - Brazil
[3] Nucleo Milenio Salmonidos Invasores, Concepcion - Chile
[4] Natl Council Sci & Technol Dev CNPq, Brasilia, DF - Brazil
Total Affiliations: 4
Document type: Journal article
Source: Aquaculture; v. 526, SEP 15 2020.
Web of Science Citations: 0
Abstract

Optimum contribution selection (OCS) and mate selection (MS) are alternative strategies to maximize genetic gain under controlled rates of inbreeding. There is evidence in the literature that MS outperforms OCS in controlling inbreeding under the same expected genetic gain in the short-term. It is unclear, however, if the same would occur in the long-term. This study aimed to compare OCS and MS regarding short- and long-term genetic progress and inbreeding, using simulated data. The structure of the simulated population aimed to mimic an aquaculture breeding program. Twenty discrete generations were simulated, considering 50 families and 2000 offspring per generation, and a trait with a heritability of 0.3. OCS and MS were applied using a differential evolution (DE) algorithm, under an objective function that accounted for genetic merit, coancestry among selection candidates and inbreeding of the future progeny. For OCS, the optimization process consisted of selection based on optimum contribution followed by minimum inbreeding mating. Objective functions using different weights on coancestry were tested. For each application, 20 replicates were simulated and the results were compared based on their average. Both strategies, OCS and MS, were very effective in controlling inbreeding over the generations. In the short-term, MS was more efficient than OCS in controlling inbreeding under the same genetic gain. In the long-term, OCS and MS resulted in similar genetic progress and average inbreeding, under the same penalty on coancestry. (AU)

FAPESP's process: 15/25232-7 - Mate selection in coho salmon
Grantee:Grazyella Massako Yoshida
Support Opportunities: Scholarships abroad - Research Internship - Doctorate
FAPESP's process: 14/20626-4 - Mate selection in aquaculture species
Grantee:Grazyella Massako Yoshida
Support Opportunities: Scholarships in Brazil - Doctorate