Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Pore-scale investigation of the use of reactive nanoparticles for in situ remediation of contaminated groundwater source

Full text
Author(s):
Pak, Tannaz [1] ; de Lima Luz, Jr., Luiz Fernando [2] ; Tosco, Tiziana [3] ; Ruiz Costa, Gabriel Schubert [4] ; Rangel Rosa, Paola Rodrigues [4] ; Archilha, Nathaly Lopes [4]
Total Authors: 6
Affiliation:
[1] Univ Teesside, Engn Dept, Middlesbrough TS1 3BX, Cleveland - England
[2] Univ Fed Parana, Chem Engn Dept, BR-81531980 Curitiba, Parana - Brazil
[3] Politecn Torino, Dept Environm Land & Infrastruct Engn, I-10129 Turin - Italy
[4] Brazilian Ctr Res Energy & Mat, Brazilian Synchrotron Light Lab, BR-13083970 Campinas, SP - Brazil
Total Affiliations: 4
Document type: Journal article
Source: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA; v. 117, n. 24, p. 13366-13373, JUN 16 2020.
Web of Science Citations: 3
Abstract

Nanoscale zero-valent iron (nZVI) particles have excellent capacity for in situ remediation of groundwater resources contaminated by a range of organic and inorganic contaminants. Chlorinated solvents are by far the most treated compounds. Studies at column, pilot, and field scales have reported successful decrease in contaminant concentration upon injection of nZVI suspensions in the contaminated zones. However, the field application is far from optimized, particularly for treatments at-or close to-the source, in the presence of residual nonaqueous liquid (NAPL). The knowledge gaps surrounding the processes that occur within the pores of the sediments hosting those contaminants at microscale limit our ability to design nanoremediation processes that are optimized at larger scales. This contribution provides a porescale picture of the nanoremediation process. Our results reveal how the distribution of the trapped contaminant evolves as a result of contaminant degradation and generation of gaseous products. We have used state-of-the-art four-dimensional (4D) imaging (time-resolved three-dimensional {[}3D]) experiments to understand the details of this degradation reaction at the micrometer scale. This contribution shows that the gas released (from the reduction reaction) remobilizes the trapped contaminant by overcoming the capillary forces. Our results show that the secondary sources of NAPL contaminations can be effectively treated by nZVI, not only by in situ degradation, but also through pore-scale remobilization (induced by the evolved gas phase). The produced gas reduces the water relative permeability to less than 1% and, therefore, significantly limits the extent of plume migration in the short term. (AU)

FAPESP's process: 19/06627-1 - Groundwater remediation using nano/biotechnology with focus on the contaminated resources in Brazil (GRUN)
Grantee:Nathaly Lopes Archilha
Support Opportunities: Organization Grants - Scientific Meeting
FAPESP's process: 17/20308-0 - Groundwater remediation using nanotechnology (GRUN)
Grantee:Nathaly Lopes Archilha
Support Opportunities: Research Grants - Visiting Researcher Grant - International